第一范文网 - 专业文章范例文档资料分享平台

数学竞赛辅导讲座:同余

来源:用户分享 时间:2021-06-02 本文由落日桥头细感风 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2010年中学数学竞赛辅导讲座(经典竞赛辅导资料)

数学竞赛辅导讲座:同余

知识、方法、技能

同余是数论中的重要概念,同余理论是研究整数问题的重要工作之一.本讲介绍同余的基本概念,剩余类和完全剩余系,同余方程,整数模的阶和中国剩余定理.

Ⅰ.基本概念

定义一:设m是一个给定的正整数.如果两个整数a、b用m除所得的余数相同,则称a、b对模m同余,记为a≡b(modm);否则,记为ab(modm).

例如,15≡7(mod4),-12(mod7).

同余有如下两种等价定义法:

定义一* 若m|a-b,则称a、b对模m同余.

定义一**若a=b+mt(t∈Z),则称a、b对模m同余.

同余的基本性质:

(1)a 0(modm) m|a.

(2)a a(modm)(反身性)

a b(modm) b a(modm)(对称性)

a b(modm) a c(modm)(传递性)b c(modm)

(3)若a b(modm),c d(modm),则

①a c b d(modm);

②ac bd(modm).

(4)若ai bi(modm),i 0,1,2, ,n.则,anxn a1x a0 bnxn b1x b0(modm).特别地,设f(x) anxn a1x a0(ai Z),若a b(modm),则f(a) f(b)(modm).

(5)若ac bc(modm),则a bm).特别地,又若(c,m)=1,则a b(modm). (m,c)

【证明】因m|c(a b),这等价于abmc|(a b).又因若(a,b)=d (,)=1dd(m,c)(m,c)

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新IT计算机数学竞赛辅导讲座:同余全文阅读和word下载服务。

数学竞赛辅导讲座:同余.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1201954.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top