Theclassc(V)residesnaturallyintheChowgroupA V.Forthepurposeofthispaper,thereaderwillmissnothingbyreplacingA Vwithordinaryhomology.
TheChernclassofavarietyVisaclassofevidentgeometricsigni cance:forex-ample,thedegreeofitszero-dimensionalcomponentagreeswiththetopologicalEulercharacteristicofV.ThisfollowsessentiallyfromthePoincar´e-Hopftheorem: c(TV)∩[V] =χ(V).
ItisnaturaltoaskwhetherthereareanalogsoftheChernclassde nedforpossiblysingularvarieties,forwhichatangentbundleisnotnecessarilyavailable.
Somewhatsurprisingly,one ndsthatthereareseveralpossiblede nitions,each‘natu-ral’fordi erentreasons,andallagreeingwitheachotherinthenonsingularcase.IfXisacompleteintersectioninanonsingularvarietyV,itisreasonabletoconsidertheFultonclassc(TV)cvir(X):=
behavesastheclassofa‘virtualtangent
bundle’toX.Itsde nitioncaninfactbeextended(andinmorethanoneway)toarbitraryvarieties,see§4.2.6in[18].
Theclasscvir(X)isinasenseuna ectedbythesingularitiesofX:forahypersurfaceXinanonsingularvarietyV,itisdeterminedbytheclassofXasadivisorinV.
Amuchmorere nedinvariantistheChern-Schwartz-MacPherson(CSM)classofX,whichdependsmorecruciallyonthesingularitiesofX,andwhichwewilluseasameasureofthesingularitiesbycomparisonwithcvir(X).
Thenameoftheclassretainssomeofitshistory.Inthemid-60s,M.-H.Schwartz([29],[30])introducedaclassextendingtosingularvarietiesPoincar´e-Hopf-typeresults,bystudyingtangentframesemanatingradiallyfromthesingularities.IndependentlyofSchwartz’work,GrothendieckandDeligneconjecturedatheoryofcharacteristicclasses ttingatightfunctorialprescription,andintheearly70sR.MacPhersonconstructedaclasssatisfyingthisrequirement([25]).ItwaslaterprovedbyJ.-P.BrasseletandM.-H.Schwartz([14])thattheclassesagree.
InthispaperwedenotetheChern-Schwartz-MacPhersonclassofasingularvarietyXsimplybyc(X)(thenotationcSM(X)isfrequentlyusedintheliterature).c(NXV)
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Feynman motives of banana graphs(19)全文阅读和word下载服务。
相关推荐: