第一范文网 - 专业文章范例文档资料分享平台

Feynman motives of banana graphs(14)

来源:用户分享 时间:2021-06-03 本文由夏末的晨曦 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c

10ALUFFIANDMARCOLLI

ForthegeneralelementΓninthefamilyofthebananagraphs,thegraphhypersurfaceXΓninPn 1isde nedbythevanishingofthegraphpolynomial

).tn

Thisiseasilyseen,sinceinthiscasespanningtreesconsistofasingleedgeconnectingthetwovertices.Equivalently,onecanseethisintermsofthematrixMΓ(t).

Lemma1.6.Forthen-thbananagraphΓn,thematrixMΓn(t)isoftheform t1+t2 t200···0 t2 t2+t3 t300 0 tt+t t03344 (1.29)MΓn(t)= .00 tt+t0445 ...... ...

0000···tn 1+tn(1.28)ΨΓn=t1···tn(1

Proof.Infact,ifwechooseasabasisofthe rstcohomologyofthegraphΓntheobviousoneconsistingofthe =n 1loopsei∪ ei+1,withi=1,...,n 1,weobtainthatthen×(n 1)-matrixηikisoftheform 10000··· 11000··· .0 1100···ηik= 00 110··· 000 11··· Thus,thematrix(MΓ)rk(t)=itiηriηikhastheform(1.29).Itiseasytocheckthatthisindeedhasdeterminantgivenby(1.28).Infact,from(1.29)oneseesthatthedeterminantsatis es

detMΓn(t)=(tn 1+tn)detMΓn 1(t) t2n 1detMΓn 2(t).

Itthenfollowsbyinductionthatthedeterminantsatis estherecursiverelation

(1.30)detMΓn(t)=tndetMΓn 1(t)+t1···tn 1.

Infact,assumingtheaboveforn 1weobtain

2detMΓn(t)=tndetMΓn 1(t)+t2n 1detMΓn 2(t)+t1···tn 1 tn 1detMΓn 2(t).

ItisthenclearthatdetMΓn(t)=ΨΓn(t),withthelattergivenbytheformula(1.28),

sincethisalsoclearlysatis esthesamerecursion(1.30).

ThedualgraphΓ∨nisjustapolygonwithnverticesandwecanidentifythehypersurfacen 1XΓ∨inPwiththehyperplaneLde nedin(1.20).nWerephraseherethestatementofCorollary1.4inthespecialcaseofthebananagraphs,sinceitwillbeveryusefulinourexplicitcomputationsof§§3and4below.

1Lemma1.7.Then-thbananagraphhypersurfaceisXΓn=π2(π1(L)),withπi:G(C)→n 1P,fori=1,2,asin(1.17).TheCremonatransformationCrestrictstoa(biregular)

isomorphism

(1.31)

(1.32)C:L Σn→XΓn Σn. 1(L Σn)→XΓn Σn.π2:π1Themapπ2:G(C)→Pn 1of(1.17)restrictstoanisomorphism

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Feynman motives of banana graphs(14)全文阅读和word下载服务。

Feynman motives of banana graphs(14).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1212690.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top