We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
FEYNMANMOTIVESOFBANANAGRAPHS
PAOLOALUFFIANDMATILDEMARCOLLI
arXiv:0807.1690v2 [hep-th] 16 Jul 2008Abstract.Weconsiderthein nitefamilyofFeynmangraphsknownasthe“bananagraphs”andcomputeexplicitlytheclassesofthecorrespondinggraphhypersurfacesintheGrothendieckringofvarietiesaswellastheirChern–Schwartz–MacPhersonclasses,usingtheclassicalCremonatransformationandthedualgraph,andablowupformulaforcharacteristicclasses.Weoutlinetheinterestingsimilaritiesbetweentheseoperationsandwegiveformulaeforconesobtainedbysimpleoperationsongraphs.Weformulateapositivityconjectureforcharacteristicclassesofgraphhypersurfacesanddiscussbrie ythee ectofpassingtononcommutativespacetime.1.IntroductionSincetheextensivestudyof[15]revealedthesystematicappearanceofmultiplezetavaluesastheresultofFeynmandiagramcomputationsinperturbativequantum eldthe-ory,thequestionof ndingadirectrelationbetweenFeynmandiagramsandperiodsofmotiveshasbecomearich eldofinvestigation.TheformulationofFeynmanintegralsthatseemsmostsuitableforanalgebro-geometricapproachistheoneinvolvingSchwingerandFeynmanparameters,asinthatformtheintegralacquiresdirectlyaninterpretationasaperiodofanalgebraicvariety,namelythecomplementofahypersurfaceinaprojectivespaceconstructedoutofthecombinatorialinformationofagraph.Thesegraphhyper-surfacesandthecorrespondingperiodshavebeeninvestigatedinthealgebro-geometricperspectiveintherecentworkofBloch–Esnault–Kreimerandmorerecently,fromthepointofviewofHodgetheory,inand[26].Inparticular,thequestionofwhetheronlymotivesofmixedTatetypewouldariseinthequantum eldtheorycontextisstillunsolved.Despitethegeneralresultofwhichshowsthatthegraphhypersur-facesaregeneralenoughfromthemotivicpointofviewtogeneratetheGrothendieckringofvarieties,theparticularresultsof[15]andpointtothefactthat,eventhoughthevarietiesthemselvesareverygeneral,thepartofthecohomologythatsupportstheperiodofinteresttoquantum eldtheorymightstillbeofthemixedTateform.Onecomplicationinvolvedinthealgebro-geometriccomputationswithgraphhyper-
surfacesisthefactthatthesearetypicallysingular,withasingularlocusofsmallcodi-mension.Itbecomesthenaninterestingquestioninitselftoestimatehowsingularthegraphhypersurfacesare,acrosscertainfamiliesofFeynmangraphs(thehalfopenladdergraphs,thewheelswithspokes,thebananagraphsetc.).Sincethemaingoalistode-scribewhathappensatthemotiviclevel,onewantstohaveinvariantsthatdetecthowsingularthehypersurfaceisandthatarealsosomehowadaptedtoitsdecompositionintheGrothendieckringofmotives.Inthispaperweconcentrateonaparticularexampleandillustratesomegeneralmethodsforcomputingsuchinvariantsbasedonthetheoryofcharacteristicclassesofsingularvarieties.
Partofthepurposeofthepresentpaperistofamiliarizephysicistsworkinginpertur-bativequantum eldtheorywithsometechniquesofalgebraicgeometrythatareusefulintheanalysisofgraphhypersurfaces.Thus,wetryasmushaspossibletospellouteverythingindetailandrecallthenecessarybackground.
1
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Feynman motives of banana graphs全文阅读和word下载服务。
相关推荐: