第一范文网 - 专业文章范例文档资料分享平台

新人教版八年级数学下册知识点总结归纳

来源:用户分享 时间:2025/6/16 22:24:17 本文由闂佸搫顦壕顓㈠礉閿燂拷 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

八年级数学(下册)知识点总结

二次根式

【知识回顾】

1.二次根式:式子a(a≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式:

二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质:

a(a>0)

22

(1)(a)=a (a≥0); (2)a?a?

0 (a=0);

5.二次根式的运算:

?a(a<0)

(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.

(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.

(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.

=·(a≥0,b≥0);

bb(b≥0,a>0). ?aa(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.

典型例题

21.(1)二次根式(-5的值是(※). )(A)?5

(B)5或?5

2 (C)25 (D)5

(2)二次根式(?3)的值是(※). (A)

(B)3或

(C)9

(D)3

(3)计算:16= ※ .

(4)实数a,b在数轴上的位置如图所示,则(a?b)2?a的化简结果为 ※ .

ba

2. (1)若式子x?1在实数范围内有意义,则x的取值范围为(※). (A) (B) (C) (D) (2)函数y?-101(第14题)

xx?1的自变量x的取值范围是 ※ .

3.(1)下列各式计算正确的是(※). (A)2?22??2

(B)a2b?ab (D)6?3?(C)(?4)?(?9)=?4??9 (2)下列各式计算正确的是(※). (A)32?22?1

3

(B)(5?3)(5?3)?2 (D)6?3?(C)(?4)?(?9)=?4??9

4 (1)(本小题满分6分,各题3分)

3

(12+20)+2(3?5); (2)4a2b3(a?0). 计算:(1)

(2).(本小题满分6分,各题3分)

(8+3)?6; (2)(2+3)(22-5)计算:(1).

勾股定理

2

2

2

1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a+b=c。

2.勾股定理逆定理:如果三角形三边长a,b,c满足a+b=c。,那么这个三角形是直角三角形。

2

2

2

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

4.直角三角形的性质

(1)、直角三角形的两个锐角互余。可表示如下:∠C=90°?∠A+∠B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30°

可表示如下: ?BC=

1AB 2 ∠C=90° (3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°

可表示如下: ?CD= D为AB的中点

1AB=BD=AD 26、常用关系式 由三角形面积公式可得:AB?CD=AC?BC

7、直角三角形的判定

1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a?b?c,那么这个三角形是直角三角形。

2228、命题、定理、证明

1、命题的概念

判断一件事情的语句,叫做命题。 理解:命题的定义包括两层含义: (1)命题必须是个完整的句子;

(2)这个句子必须对某件事情做出判断。 2、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题

假命题(错误的命题)

所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理

人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。 4、定理

用推理的方法判断为正确的命题叫做定理。 5、证明

判断一个命题的正确性的推理过程叫做证明。 6、证明的一般步骤

(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

9、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。 (2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用:

位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。 结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

10数学口诀. 平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。 勾股定理经典习题

1.(1)若△ABC的三边长分别为1,2,3,那么此三角形最大的内角的度数是(※). (A)130?

(B)120? (C)90?

(D)60?

(2) 在△ABC中,AB?6,AC?8,BC?10,则该三角形为(※).

(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)等腰直角三角形

2.如图,在□ABCD中,AC与BD相交于O,AD?12,OB?5,AC?26,则△AOB的周长为(※).

(A) 25 (B)18?413 (C) 18?461 (D)18?261 A(第

10

DOBC

3 如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量

AB?2,则树高为(※)米.

(A)1+5 (B)1+3 (C)25-1 (D)3

(第8题)

APB C

E A

B(第15题) CD

(第16题)

4.在△ABC中,AB?AC?5,BC?6,若点P在边AC上移动,则BP的最小值是 ※ . 5.(1)如图,在三角形纸片ABC中,BC=3,AB?6,?BCA?90?,在AC上取一点E,沿BE折叠,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长为 ※ .

(2)如图有一块直角三角形纸片,?C?90?,?B?60?,

BDCFEABC?23cm,现将△ABC沿直线EF折叠,使点

A落在直角边BC的中点D处,则CF? ※ cm.

(第16题)

6(本小题满分6分)

如图一架长10m的梯子AB斜靠在竖直的墙面OB上,此时AO的长6m,如果梯子的顶端B沿着墙下滑1m,那么梯子底端也向外移动1m吗为什么

O

B

l2yl1PADO

A 地面

O1Ax(第18题)

B(第20题)

C(第19题) 7.(本小题满分8分)

已知:△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上(如图所

示),BC?1. (1)求AB的长;

(2)设EA?x,AD?y,求x?y的值.

(第23题)

22AEDCB

新人教版八年级数学下册知识点总结归纳.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3fezn1ovyn6b8ve00zsa83uyx9681900vcm_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top