第一范文网 - 专业文章范例文档资料分享平台

Pareto Points in SRAM Design Using the Sleepy Stack Approach

来源:用户分享 时间:2022-08-26 本文由夏末的晨曦 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

ParetoPointsinSRAMDesignUsingtheSleepyStackApproach

JunCheolParkandVincentJ.MooneyIIISchoolofElectricalandComputerEngineeringGeorgiaInstituteofTechnology,Atlanta,GA30332

{jcpark,mooney}@ece.gatech.eduAbstract

LeakagepowerconsumptionofcurrentCMOStech-nologyisalreadyagreatchallenge.ITRSprojectsthatleakagepowerconsumptionmaycometodominateto-talchippowerconsumptionasthetechnologyfeaturesizeshrinks.LeakageisaseriousproblemparticularlyforSRAMwhichoccupieslargetransistorcountinmoststate-of-the-artchipdesigns.Weproposeanovelultra-lowleakageSRAMdesignwhichwecall“sleepystackSRAM.”Unlikemanyotherpreviousapproaches,sleepystackSRAMcanretainlogicstateduringsleepmode,http://www.77cn.com.cnparedtothebestalternativewecould nd,a6-TSRAMcellwithhigh-Vthtransistors,thesleepystackSRAMcellwith2xVthat110oCachievesmorethan2.77Xleakagepowerreduc-tionatacostof16%delayincreaseand113%areain-crease.Alternatively,bywideningwordlinetransistorsandtransistorsinthepull-downnetwork,thesleepystackSRAMcellcanachieves2.26Xleakagereductionwithoutincreasingdelayatacostofa125%areapenalty.

1Introduction

PowerconsumptionisoneofthetopconcernsofVeryLargeScaleIntegration(VLSI)circuitdesign,forwhichComplementaryMetalOxideSemiconductor(CMOS)istheprimarytechnology.Today’sfocusonlowpowerisnotonlybecauseoftherecentgrowingdemandsofmobileapplications.Evenbeforethemobileera,powerconsump-tionhasbeenafundamentalproblem.PowerconsumptionofCMOSconsistsofdynamicandstaticcomponents.Al-thoughdynamicpoweraccountedfor90%ormoreofthetotalchippowerpreviously,asthefeaturesizeshrinks,e.g.,to0.09µand0.065µ,staticpowerhasbecomeagreatchallengeforcurrentandfuturetechnologies.BasedontheInternationalTechnologyRoadmapforSemiconduc-tors(ITRS)[1],Kimetal.reportthatsubthresholdleakagepowerdissipationofachipmayexceeddynamicpowerdissipationatthe65nmfeaturesize[2].

Oneofthemainreasonscausingtheleakagepowerin-creaseisincreaseofsubthresholdleakagepower.Whentechnologyfeaturesizescalesdown,supplyvoltageandthresholdvoltagealsoscaledown.Subthresholdleakagepowerincreasesexponentiallyasthresholdvoltagede-creases.Furthermore,thestructureoftheshortchanneldevicelowersthethresholdvoltageevenlower.Anothercontributortoleakagepowerisgate-oxideleakagepower

duetothetunnelingcurrentthroughthegate-oxideinsu-lator.Althoughgate-oxideleakagepowermaybecom-parabletosubthresholdleakagepowerinnanoscaletech-nology,weassumeothertechniqueswilladdressgate-oxideleakage;forexample,high-kdielectricgateinsu-latorsmayprovideasolutiontoreducegate-leakage[2].Therefore,thispaperfocusesonreducingsubthresholdleakagepowerconsumption.

AlthoughleakagepowerconsumptionisaproblemforallCMOScircuits,inthispaperwefocusonSRAMbe-causeSRAMtypicallyoccupieslargeareaandtransistorcountinaSystem-on-a-Chip(SoC).Furthermore,consid-eringanembeddedprocessorexample,SRAMaccountsfor60%ofareaand90%ofthetransistorcountinIntelXScale[3],andthusmaypotentiallyconsumelargeleak-agepower.

Inthispaper,weproposethesleepystackSRAMcelldesign,whichisamixtureofchangingthecircuitstructureaswellasusinghigh-Vth.Thesleepystacktechnique[4]achievesgreatlyreducedleakagepowerwhilemaintainingpreciselogicstateinsleepmode,whichmaybecrucialforaproductspendingthemajorityofitstimeinsleeporstand-bymode.Basedonthesleepystacktechnique,thesleepystackSRAMcelldesigntakesadvantageofultra-lowleakageandstatesaving.

Thispaperisorganizedasfollows.InSection2,priorworkinlow-leakageSRAMdesignisdiscussed.InSec-tion3,oursleepystackSRAMcelldesignapproachisproposed.InSection4and5,experimentalmethodologyandtheresultsarepresented.InSection6,conclusionsaregiven.

2Previouswork

Inthissection,wediscussstate-of-the-artlow-powermemorytechniques,especiallySRAMandcachetech-niquesonwhichourresearchfocuses.

Oneeasywaytoreduceleakagepowerconsumptionisbyadoptinghigh-VthtransistorsforallSRAMcelltran-sistors.Thissolutionissimplebutincursdelayincrease.Azizietal.observethatinnormalprograms,mostofthebitsinacachearezeros.Therefore,Azizietal.pro-poseanAsymmetric-CellCache(ACC),whichpartiallyapplieshigh-VthtransistorsinanSRAMcelltosaveleak-agepoweriftheSRAMcellisinthezerostate[5].How-ever,theACCleakagepowersavingsarequitelimitedincaseofabenchmarkwhich llsSRAMwithmostlynon-

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

zerovalues.Niietal.proposeAuto-Backgate-ControlledMulti-ThresholdCMOS(ABC-MTCMOS),whichusesReverse-BodyBias(RBB)toreduceleakagepowercon-sumption[6].RBBincreasesthresholdvoltagewithoutlosinglogicstate.Thisincreasedthresholdvoltagere-ducesleakagepowerconsumptionduringsleepmode.However,sincetheABC-MTCMOStechniqueneedstochargelargewells,ABC-MTCMOSrequiressigni canttransitiontimeandpowerconsumption.

Theforcedstacktechniqueachievesleakagepowerre-ductionbyforcingastackstructure[7].Thistechniquebreaksdownexistingtransistorsintotwotransistorsandtakesanadvantageofthestackeffect,whichreducesleak-agepowerconsumptionbyconnectingtwoormoreturnedofftransistorsserially.Theforcedstacktechniquecanbeappliedtoamemoryelementsuchasaregister[8]oranSRAMcell[9].However,delayincreasemayoccurduetoincreasedresistance,andthelargestleakagesavingsre-portedunderspeci cconditionsis90%comparedtocon-ventionalSRAMin0.07µtechnology[9].

http://www.77cn.com.cningsleeptransistors,thegated-VddSRAMcellblockspull-upnetworksfromtheVddrail(pMOSgated-Vdd)and/orblockspull-downnetworksfromtheGndrail(nMOSgated-Vdd)[10].Thegated-VddSRAMcellachieveslowleakagepowerconsumptionfromboththestackeffectandhigh-Vthsleeptransistors.However,thegated-VddSRAMcell[10]losesstatewhenthesleeptran-sistorsareturnedoff.

Flautneretal.proposethe“drowsycache”techniquethatswitchesVdddynamically[11].Forshort-channeldevicessuchas0.07µchannellengthdevices,leakagepowerincreasesduetoDrainInducedBarrierLower-ing(DIBL),therebyincreasingsubthresholdleakagecur-rent.ThedrowsycachelowersthesupplyvoltageduringdrowsymodeandsuppressesleakagecurrentusingDIBL.Thedrowsycachetechniquecanretainstoreddataataleakagepowerreductionofupto86%[11].

OursleepystackSRAMcellcanachievemorepowersavingsthanahigh-Vth,anACCoradrowsycacheSRAMcell.Furthermore,thesleepystackSRAMdoesnotrequirelargetransitiontimeandtransitionpowercon-sumptionunlikeABC-MTCMOS.

3Approach

We rstintroduceourrecentlyproposedlow-leakagestructurenamed“sleepystack”inSection3.1.Then,weexplainournewlyproposed“sleepystackSRAM”inSec-tion3.2.

3.1Sleepystackleakagereduction

Thesleepystacktechniquehasastructuremergingtheforcedstacktechniqueandthesleeptransistortechnique.Figure1showsasleepystackinverter.ThesleepystacktechniquepidesexistingtransistorsintotwotransistorseachtypicallywiththesamewidthW1halfthesizeoftheoriginalsingletransistor’swidthW0(i.e.,W1=W0/2),

’=1

’=0

Figure1:(a)Sleepystackinverteractivemode(left)and(b)sleepmode(right)

thusmaintainingequivalentinputcapacitance.ThesleepystackinverterinFigure1(a)usesW/L=3forthepull-uptransistorsandW/L=1.5forthepull-downtransis-tors,whileaconventionalinverterwiththesameinputca-pacitancewoulduseW/L=6forthepull-uptransis-torandW/L=3forthepull-downtransistor(assumingµn=2µp).Thensleeptransistorsareaddedinparalleltooneofthetransistorsineachsetoftwostackedtransistors.Weusehalfsizetransistorwidthoftheoriginaltransistor(i.e.,weuseW0/2)forthesleeptransistorwidthofthesleepystack.

Duringactivemode,S=0andS =1areasserted,andthusallsleeptransistorsareturnedon.Thisstructurepo-tentiallyreducescircuitdelay(comparedtonotaddingsleeptransistors)because(i)addedsleeptransistorsarealwaysonduringactivemodeandthusateachsleeptran-sistordrain,thevoltagevalueconnectedtoasleeptran-sistorisalwaysreadyduringactivemodeand(ii)thereisareducedresistanceduetothetwoparalleltransistors.Therefore,wecanintroducehigh-Vthtransistorstothesleeptransistorsandtransistorsinparallelwiththesleeptransistorwithoutincurringlarge(e.g.,2Xormore)de-layoverhead.Duringsleepmode,S=1andS =0areas-serted,andsobothofthesleeptransistorsareturnedoff.Thehigh-Vthtransistorsandthestackedtransistorsinthesleepystackapproachsuppressleakagecurrent.Inshort,usinghigh-Vthtransistors,thesleepystacktechniquepo-tentiallyachieves200Xleakagereductionovertheforcedstacktechnique.Furthermore,unlikethesleeptransistortechnique[10],thesleepystacktechniquecanretainexactlogicstatewhileachievingsimilarleakagereduction.

3.2SleepystackSRAMcell

Figure2:SRAMcellleakagepaths

WedesignanSRAMcellbasedonthesleepystacktechnique.Theconventional6-TSRAMcellconsistsoftwocoupledinvertersandtwowordlinepasstransistorsasshowninFigure2.Sincethesleepystacktechniquecan

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

beappliedtoeachtransistorseparately,thesixtransistorscanbechangedinpidually.However,tobalancecurrent ow(failuretodosopotentiallyincreasestheriskofsofterrors[9]),asymmetricdesignapproachisused.

Table1:SleepystackappliedtoanSRAMcell

Combinations

cell leakagebitline leakagereduction

reductionPull-Down (PD) sleepy stackmediumlowPull-Down (PD), wordline (WL) sleepy stackmediumhighPull-Up (PU), Pull-Down (PD) sleepy stackhighlow

Pull-Up (PU), Pull-Down (PD),

wordline (WL) sleepy stack

high

high

Therearetwomaintypesofsubthresholdleakagecur-rentsina6-TSRAMcell:cellleakageandbitlineleak-age(seeFigure2).Itisveryimportantwhenapply-ingthesleepystacktechniquetoconsiderthevariousleakagepathsintheSRAMcell.Toaddresstheeffectofthesleepystacktechniqueproperly,weconsiderfourcombinationsofthesleepystackSRAMcellasshowninTable1.InTable1,“Pull-Down(PD)sleepystack”meansthatthesleepystacktechniqueisonlyappliedtothepull-downtransistorsofanSRAMcellasindicatedinthebottomdashedboxinFigure3.“Pull-Down(PD),wordline(WL)sleepystack”meansthatthesleepystacktechniqueisappliedtothepull-downtransistorsaswellaswordlinetransistors.Similarly,“Pull-Up(PU),Pull-Down(PD)sleepystack”meansthatthesleepystacktechniqueisappliedtothepull-uptransistorsandthepull-downtransistors(butnottothewordlinetran-sistors)ofanSRAMcell.Finally,“Pull-Up(PU),Pull-Down(PD),wordline(WL)sleepystack”meansthatthesleepystacktechniqueisappliedtoallthetransistorsinanSRAMcell.

ThePDsleepystackcansuppresssomepartofthecellleakage.Meanwhile,thePU,PDsleepystackcansup-pressthemajorityofthecellleakage.However,with-outapplyingthesleepystacktechniquetothewordline(WL)transistors,bitlineleakagecannotbesigni -cantlysuppressed.Althoughlyinginthebitlineleak-agepath,thepull-downsleepystackisnoteffectivetosuppressbothbitlineleakagepathsbecauseoneofthepull-downsleepystacksisalwayson.Therefore,tosup-presssubthresholdleakagecurrentinaSRAMcellfully,thePU,PDandWLsleepystackapproachneedstobeconsideredasshowninFigure3.

ThesleepystackSRAMcelldesignresultsinareain-creasebecauseoftheincreaseinthenumberoftransis-tors.However,wehalvethetransistorwidthsinaconven-tionalSRAMcelltomaketheareaincreaseofthesleepystackSRAMcellnotnecessarilydirectlyproportionaltothenumberoftransistors.Halvingatransistorwidthispossiblewhentheoriginaltransistorwidthisatleast2Xlargerthantheminimumtransistorwidth(whichistypi-callythecaseinmodernhighperformanceSRAMcellde-sign).Unliketheconventional6-TSRAMcell,thesleepystackSRAMcellrequirestheroutingofoneortwoextrawiresforthesleepcontrolsignal(s).

Figure3:SleepystackSRAMcell

4Experimentalmethodology

ToevaluatethesleepystackSRAMcell,wecompareourtechniqueto(i)usinghigh-Vthtransistorsasdirectre-placementsforlow-Vthtransistors(thusmaintainingonly6transistorsinanSRAMcell)and(ii)theforcedstacktechnique[7];wechoosethesetechniquesbecausethesetwotechniquesarestatesavingtechniqueswithouthighriskofsofterror[9].AlthoughAsymmetric-CellSRAMexplainedinSection2isalsoastate-savingSRAMcelldesign,wedonotconsiderAsymmetric-CellSRAMbe-causeweassumethatourSRAMcellsare lledequallywith‘1s’and‘0s.’ThisisnottheconditionthatACCprefers,andunderthisconditiontheleakagepowersav-ingsofACCaresmallerthanthehigh-VthSRAMcell,whichuseshigh-Vthforallsixtransistors.

We rstlayoutSRAMcellsofeachtechnique.Insteadofstartingfromscratch,weusetheCACTImodelfortheSRAMstructureandtransistorsizing[12].WeuseNCSUCadencedesignkittargetingTSMC0.18µtech-nology[13].Byscalingdownthe0.18µlayout,weobtain0.07µtechnologytransistorlevelHSPICEschematics[4],andwedesigna64x64bitSRAMcellarray.

Weestimateareadirectlyfromourcustomlayoutus-ingTSMC0.18µtechnologyandscaleto0.07µusingthefollowingformula:0.07µarea=0.18µarea×(0.07µ)2/(0.18µ)2×1.1(non-linearoverhead)[4].Weareawarethisisnotexact,hencetheword“estimate.”Wealsoas-sumetheareaoftheSRAMcellwithhigh-Vthtransistorsisthesameaswithlow-Vthtransistors.Thisassumptionisreasonablebecausehigh-Vthcanbeimplementedbychanginggateoxidethickness,andthisalmostdoesnotaf-fectareaatall.Weestimatedynamicpower,staticpowerandreadtimeofeachofthevariousSRAMcelldesignsusingHSPICEsimulationwithBerkeleyPredictiveTech-nologyModel(BPTM)targeting0.07µtechnology[14].Thereadtimeismeasuredfromthetimewhenanenabledwordlinereaches10%oftheVddvoltagetothetimewheneitherbitlineorbitline’dropsfrom100%oftheprechargedvoltageto90%oftheprechargedvolt-agevaluewhiletheotherremainshigh.Therefore,oneofthebitlinesignalremainsatVdd,andtheotheris0.9xVdd.This10%voltagedifferencebetweenbitlineandbitline’istypicallyenoughforasenseampli ertodetectthestoredcellvalue[15].Dynamicpowerof

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

theSRAMarrayismeasuredduringthereadoperationwithcycletimeof4ns.StaticpoweroftheSRAMcellismeasuredbyturningoffsleeptransistorsifapplicable.Toavoidleakagepowermeasurementbiasedbyamajorityof‘1’versus‘0’(orvice-versa)values,halfofthecellsarerandomlysetto‘0,’withtheremaininghalfofthecellssetto‘1.’

5Results

WecomparethesleepystackSRAMcelltothecon-ventional6-TSRAMcell,high-Vth6-TSRAMcellandforcedstackSRAMcell.Forthe“high-Vth”techniqueandtheforcedstacktechnique,weconsiderthesametech-niquecombinationsweappliedtothesleepystackSRAMcell–seeTable1.

Toproperlyobservethetechniques,wecompare13differentcasesasshowninTable2.Case1istheconven-tional6-TSRAMcell,whichisourbasecase.Cases2,3,4and5are6-TSRAMcellsusingthehigh-Vthtechnique.PDhigh-Vthisthehigh-Vthtechniqueappliedonlytothepull-downtransistors.PD,WLhigh-Vthisthehigh-Vthtechniqueappliedtothepull-downtransistorsaswellastothewordlinetransistors.PU,PDhigh-Vthisthehigh-Vthtechniqueappliedtothepull-upandpull-downtran-sistors.PU,PD,WLhigh-Vthisthehigh-VthtechniqueappliedtoalltheSRAMtransistors.Cases6,7,8and9are6-TSRAMcellswiththeforcedstacktechnique[7].PDstackistheforcedstacktechniqueappliedonlytothepull-downtransistors.PD,WLstackistheforcedstacktechniqueappliedtothepull-downtransistorsaswellastothewordlinetransistors.PU,PDstackistheforcedstacktechniqueappliedtothepull-upandpull-downtran-sistors.PU,PD,WLstackistheforcedstacktechniqueappliedtoalltheSRAMtransistors.Pleasenotethatwedonotapplyhigh-Vthtotheforcedstacktechniquebe-causetheforcedstackSRAMwithhigh-Vthincursmorethan2Xdelayincrease.Cases10,11,12and13arethefoursleepystackSRAMcellapproachesaslistedinTa-ble1.ForsleepystackSRAM,high-VthisappliedonlytothesleeptransistorsandthetransistorsparalleltothesleeptransistorsasshowninFigure3.

5.1Area

Table2:Layoutarea

Technique

Area(u2)Area(u2)Normalized

0.18u20.07u2

areaCase1

Low-Vth Std3.8254.50017.2132.8641.00Case2PD high-Vth

3.8254.50017.2132.8641.00Case3PD, WL high-Vth3.8254.50017.2132.8641.00Case4PU, PD high-Vth

3.8254.50017.2132.8641.00Case5PU, PD, WL high-Vth3.8254.50017.2132.8641.00Case6PD stack

3.4654.68016.2162.6980.94Case7PD, WL stack3.4655.76019.9583.3201.16Case8PU, PD stack

3.2854.68015.3742.5580.89Case9PU, PD, WL stack3.4655.76019.9583.3201.16Case10PD sleepy stack

4.5455.04022.9073.8111.33Case11PD, WL sleepy stack4.4556.70529.8714.9691.74Case12PU, PD sleepy stack

5.7605.04029.0304.8291.69Case13

PU, PD, WL sleepy stack

5.535

6.615

36.614

6.0912.13

Table2showstheareaofeachtechnique.PleasenotethatSRAMcellareacanbereducedfurtherbyusingmini-

mumsizetransistors,butreducingtransistorsizeincreasescellreadtime.SomeSRAMcellswiththeforcedstacktechniqueshowsmallerareaevencomparedtothebasecase.Thereasonisthatpidedtransistorscanenableaparticularlysqueezeddesign[4].Thesleepystacktech-niqueincreasesareabybetween33%and113%.TheaddedsleeptransistorsareabottlenecktoreducethesizeofthesleepystackSRAMcells.Further,wiringthesleepcontrolsignals(anoverheadwedonotconsiderinTa-ble2)makesthedesignmorecomplicated.

5.2Cellreadtime

Table3:Normalizedcellreadtime

Technique25°C

110°C

1xVth1.5xVth2xVth

1xVth1.5xVth2xVth

Case1Low-Vth Std1.000

N/A1.000

N/ACase2PD high-Vth1.0221.0431.0201.061Case3PD, WL high-VthCase4PU, PD high-VthN/A

1.1111.280

1.0221.055N/A

1.1171.262

1.0201.048Case5PU, PD, WL high-Vth1.1111.2771.1101.259

Case6PD stack1.3681.345Case7PD, WL stack1.647

1.682

Case8PU, PD stack1.348N/A

1.341N/A

Case9PU, PD, WL stack1.7041.678

Case10PD sleepy stack1.2761.3071.2631.254Case11PD, WL sleepy stack1.458Case12PU, PD sleepy stackN/A

1.551

1.2751.306N/A

1.4351.546

1.2871.319Case13

PU, PD, WL sleepy stack1.4561.605

1.4501.504

AlthoughSRAMcellreadtimechangesslightlyas

temperaturechanges,theimpactoftemperatureonthecellreadtimeisquitesmall.However,theimpactofthresholdvoltageislarge.Weapply1.5xVthand2xVthforthehigh-Vthtechniqueandthesleepystacktechnique.AsshowninTable3,thedelaypenaltyoftheforcedstacktechnique(withalllow-Vthtransistors)isbetween35%and70%comparedtothestandard6-TSRAMcell.Thisisoneoftheprimaryreasonsthattheforcedstacktechniquecannotusehigh-Vthtransistorswithoutincurringdramaticdelayincrease(e.g.,2Xormoredelaypenaltyisobservedusingeither1.5xVthor2xVth).

Amongthethreelow-leakagetechniques,thesleepystacktechniqueisthesecondbestintermsofcellreadtime.ThePU,PD,WLhigh-Vthwith2xVthis16%fasterthanthePU,PD,WLsleepystackwith2xVthat110o.SinceweareawarethatareaanddelayarecriticalfactorswhendesigningSRAM,wewillexploreareaanddelayimpactusingtradeoffsinSection5.4.However,letus rstdiscussleakagereduction(i.e.,withoutyetfocusingontradeoffs,whichwillbethefocusofSection5.4).

5.3Leakagepower

Wemeasureleakagepowerwhilechangingthresholdvoltageandtemperaturebecausetheimpactofthresholdvoltageandtemperatureonleakagepowerissigni cant.Table4showsleakagepowerconsumptionwithtwohigh-Vthvalues,1.5xVothand2xVth,andtwotemperatures,25Cand110oC,whereCase1andthecasesusingtheforcedstacktechnique(Cases6,7,8and9)arenotaf-fectedbychangingVthbecausetheseuseonlylow-Vth.(Pleasenotetheabsolutenumbersareavailablein[4].)

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

Table4:Normalizedleakagepower

Normalized leakage powerTechnique

25°C110°C

1xVth1.5xVth2xVth1xVth1.5xVth2xVth

Case1Low-Vth Std1.0000N/A1.0000N/ACase2PD high-Vth

0.54660.52740.57110.5305Case3PD, WL high-Vth0.1860

Case4PU, PD high-Vth

N/A0.20710.17360.25550.37850.3552N/A

0.40220.3522Case5PU, PD, WL high-Vth0.03910.00140.08570.0065

Case6PD stack

0.55410.5641Case7PD, WL stack0.2213Case8PU, PD stack

0.3862N/A

0.2554

0.3950N/ACase9PU, PD, WL stack0.05550.0832

Case10PD sleepy stack

0.53310.53150.52820.5192Case11PD, WL sleepy stack0.18520.1827Case12PU, PD sleepy stack

N/A

0.36460.3630N/A

0.19550.1820

0.35340.3439Case13

PU, PD, WL sleepy stack

0.01670.00330.01670.0024

5.3.1

Resultsat25oC

Ourresultsat25oCshowthatCase5isthebestwith2xVth

andCase13isthebestwith1.5xVth.Specially,at1.5xVth,Case5andCase13achieve25Xand60Xleakagereduc-tionoverCase1,respectively.However,theleakagere-ductioncomeswithdelayincrease.Thedelaypenaltyis11%and45%,respectively,comparedtoCase1.5.3.2

Resultsat110o

C

Absolutepowerconsumptionnumbersat110o

Cshow

morethan10Xincreaseofleakagepowerconsumptioncomparedtotheresultsat25oC.ThiscouldbeaseriousproblemforSRAMbecauseSRAMoftenresidesnexttoamicroprocessorwhosetemperatureishigh.

At110oC,thesleepystacktechniqueshowsthebestre-sultinboth1.5xVthand2xVthevencomparedtothehigh-Vthtechnique.Theleakageperformancedegradationun-derhightemperatureisverynoticeablewiththehigh-Vthtechniqueandtheforcedstacktechnique.Forexample,at25oCthehigh-Vthtechniquewith1.5xVth(Case5)andtheforcedstacktechnique(Case9)showaround96%leak-agereduction.However,at110oCthesametechniquesshowaround91%ofleakagepowerreductioncomparedtoCase1.Onlythesleepystacktechniqueachievessu-periorleakagepowerreduction;afterincreasingtemper-ature,thesleepystackSRAMshows5.1Xand4.8Xre-ductionscomparedtoCase5andCase9,respectively,with1.5xVth.

Whenthelow-leakagetechniquesareappliedonlytothepull-upandpull-downtransistors,leakagepowerreductionisatmost65%(2xVth,110oC)becausebitlineleakagecannotbesuppressed.Theremaining35%ofleakagepowercanbesuppressedbyapplyinglow-leakagetechniquestowordlinetransistors.Thisim-pliesthatbitlineleakagepoweraddressesaround35%ofSRAMcellleakagepowerconsumption.Thistrendisobservedforallthreetechnniquesconsidered,i.e.,high-Vth,forcedstackandsleepystack.

5.4Tradeoffsinlow-leakagetechniques

Althoughthesleepystacktechniqueshowssuperiorre-sultsintermsofleakagepower,weneedtoexplorearea,delayandpowertogetherbecausethesleepystacktech-

niquecomeswithnon-negligibleareaanddelaypenalties.Tobecomparedwiththehigh-Vthtechniqueatthesamecellreadtime,weconsiderfourmorecasesforsleepystackSRAMinadditiontothecasesalreadyconsideredinTable4;weincreasethewidthsofallwordlineandpull-downtransistors(includingsleeptransistors).Specif-ically,forthesleepystacktechnique,we ndnewtransis-torwidthsofwordlinetransistorsandpull-downtran-sistorssuchthattheresultisdelayapproximatelyequaltothedelayofthe6-Thigh-Vthcase,i.e.,Case5.Thenewcasesaremarkedwith‘*’(Cases10*,11*,12*,13*).TheresultsareshowninTable5.Toenhancereadabilityoftradeoffs,eachtableissortedbyleakagepower.Althoughwecomparedfourdifferentsimulationconditions,wetaketheconditionwith2xVthat110oCand2xVthat110oCasimportantrepresentativetechnologypointsatwhichtocomparethetrade-offsbetweentechniques.Wechoose110oCbecausegenerallySRAMoperatesatahightem-peratureandalsobecausehightemperatureisthe“worstcase.”

Table5:Tradeoffs(2xVth,110oC)

Technique

NormalizedNormalizedNormalizedleakagedelayarea

Case1Low-Vth Std1.0001.0001.000Case6PD stack0.5641.3450.942Case2PD high-Vth0.5301.0611.000Case10PD sleepy stack0.5191.2541.331Case10*PD sleepy stack*0.5191.2541.331Case8PU, PD stack0.3951.3410.893Case4PU, PD high-Vth0.3521.0481.000Case12*PU, PD sleepy stack*0.3441.2701.713Case12PU, PD sleepy stack0.3441.3191.687Case7PD, WL stack0.2551.6821.159Case3PD, WL high-Vth0.1861.2621.000Case11*PD, WL sleepy stack*0.1831.2391.876Case11PD, WL sleepy stack0.1821.5461.735Case9PU, PD, WL stack0.0831.6781.159Case5PU, PD, WL high-Vth0.0071.2591.000Case13*PU, PD, WL sleepy stack*0.0031.2652.253Case13

PU, PD, WL sleepy stack

0.0021.5042.127

InTable5,weobservesixParetopoints,respectively,whichareinshadedrows,consideringthreevariablesofleakage,delay,andarea.Case13showsthelowestpossi-bleleakage,2.7Xsmallerthantheleakageofanyofthepriorapproachesconsidered;however,thereisacorre-spondingdelayandareapenalty.Alternatively,Case13*showsthesamedelay(within0.2%)asCase5and2.26XleakagereductionoverCase5;however,Case13*uses125%moreareathanCase5.Inshort,thispaperpresentsnew,previouslyunknownParetopointsatthelow-leakageendofthespectrum(forade nitionofa“Paretopoint,”pleasesee[16]).

5.5Activepower

Table6showspowerconsumptionduringreadopera-tions.TheactivepowerconsumptionincludesdynamicpowerusedtochargeanddischargeSRAMcellsplusleakagepowerconsumption.At25oCleakagepowerislessthan20%oftheactivepowerincaseofthestan-dardlow-VthSRAMcellin0.07µtechnologyaccording

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

Table6:Normalizedactivepower

Technique

25°C

110°C

1xVth1.5xVth2xVth

1xVth1.5xVth2xVth

Case1Low-Vth Std1.000

N/A1.000

N/ACase2PD high-Vth0.9360.9130.7240.691Case3PD, WL high-VthCase4PU, PD high-VthN/A

0.8580.829

0.9280.893N/A

0.6180.478

0.5720.582Case5PU, PD, WL high-Vth0.8380.8420.4320.368

Case6PD stack0.9260.669Case7PD, WL stack0.665

0.398

Case8PU, PD stack0.905N/A

0.596N/A

Case9PU, PD, WL stack0.6370.293

Case10PD sleepy stack0.9810.9810.8070.811Case11PD, WL sleepy stack0.773Case12PU, PD sleepy stackN/A

0.717

0.9611.005N/A

0.5860.600

0.7860.797Case13

PU, PD, WL sleepy stack0.7190.708

0.5880.546

toBPTM[14].However,leakagepowerincreases10Xasthetemperaturechangesto110oCalthoughactivepowerincreases3X.At110oC,leakagepowerismorethanhalfoftheactivepowerfromoursimulationresults.There-fore,withoutaneffectiveleakagepowerreductiontech-nique,totalpowerconsumption–eveninactivemode–isaffectedsigni cantly.

5.6Staticnoisemargin

ChangingtheSRAMcellstructuremaychangethestaticnoiseimmunityoftheSRAMcell.Thus,wemea-suretheStaticNoiseMargin(SNM)ofthesleepystackSRAMcellandtheconventional6-TSRAMcell.TheSNMisde nedbythesizeofthemaximumnestedsquareinabutter yplot.TheSNMofthesleepystackSRAMcellismeasuredtwiceinactivemodeandsleepmode.TheSNMofthesleepystackSRAMcellinactivemodeis0.299VandalmostexactlythesameastheSNMofacon-ventionalSRAMcell;theSNMofaconventionalSRAMcellis0.299V.Althoughwedonotperformaprocessvariationanalysis,weexpectthatthehighSNMofthesleepystackSRAMcellmakesthetechniqueasimmunetoprocessvariationsasaconventionalSRAMcell.

6Conclusionsandfuturework

Inthispaperwehavepresentedandevaluatedournewlyproposed“sleepystackSRAM.”OursleepystackSRAMprovidesthelargestleakagesavingsamongallal-ternativesconsidered.Speci cally,comparedtoastan-dardSRAMcell–Case1–Table4showsthatat110oCand2xVth,Case13reducesleakageby424XascomparedtoCase1;unfortunately,this424Xreductioncomesasacostofadelayincreaseof50.4%andanareapenaltyof113%.ResizingthesleepystackSRAMcanreducedelaysigni cantlyatacostoflessleakagesavings;speci cally,Case13*isaninterestingParetopointasdiscussedinSec-tion5.4.

Webelievethatthispaperpresentsanimportantde-velopmentbecauseoursleepystackSRAMseemstopro-vide,ingeneral,thelowestleakageParetopointsofanyVLSIdesignstyleknowntotheauthors.Giventhenon-trivialareapenalty(e.g.,upto125%forCase13*inTa-ble5),perhapssleepystackSRAMwouldbemostap-propriateforasmallSRAMintendedtostoreminimalstandbydataforanembeddedsystemspendingsigni -

canttimeinstandbymode;forsuchasmallSRAM(e.g.,

16KB),theareapenaltymaybeacceptablegivensystem-levelstandbypowerrequirements.Ifabsoluteminimumleakagepowerisextremelycritical,thenperhapsspeci ctargetembeddedsystemscouldusesleepystackSRAMmorewidely.

Forfuturework,wewillexplorehowprocessvaria-tionsaffectleakagepowerreductionusingsleepystackSRAM.

7References

[1]InternationalTechnologyRoadmapforSemiconductorsbySemi-conductorIndustryAssociation,2002.[Online].Availablehttp://www.77cn.com.cn.[2]N.S.Kim,T.Austin,D.Baauw,T.Mudge,K.Flautner,J.Hu,

M.Irwin,M.Kandemir,andV.Narayanan,“LeakageCurrent:Moore’sLawMeetsStaticPower,”IEEEComputer,vol.36,pp.68–75,December2003.[3]L.Clark,E.Hoffman,J.Miller,M.Biyani,L.Luyun,S.Straz-dus,M.Morrow,K.Velarde,andM.Yarch,“AnEmbedded32-bMicroprocessorCoreforLow-PowerandHigh-PerformanceAp-plications,”IEEEJournalofSolid-StateCircuits,vol.36,no.11,pp.1599–1608,November2001.[4]J.Park,“SleepyStack:aNewApproachtoLowPowerVLSI

andMemory,”Ph.D.dissertation,SchoolofElectricalandComputerEngineering,GeorgiaInstituteofTechnology,2005.[Online].Availablehttp://etd.gatech.edu/theses/available/etd-07132005-131806/.[5]N.Azizi,A.Moshovos,andF.Najm,“Low-LeakageAsymmetric-CellSRAM,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.48–51,August2002.[6]K.Nii,H.Makino,Y.Tujihashi,C.Morishima,Y.Hayakawa,

H.Nunogami,T.Arakawa,andH.Hamano,“ALowPowerSRAMUsingAuto-Backgate-ControlledMT-CMOS,”Proceed-ingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.293–298,August1998.[7]S.Narendra,V.D.S.Borkar,D.Antoniadis,andA.Chandrakasan,

“ScalingofStackEffectanditsApplicationforLeakageReduc-tion,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.195–200,August2001.[8]S.Tang,S.Hsu,Y.Ye,J.Tschanz,D.Somasekhar,S.Narendra,

S.-L.Lu,R.Krishnamurthy,andV.De,“ScalingofStackEffectanditsApplicationforLeakageReduction,”SymposiumonVLSICircuitsDigestofTechnicalPapers,pp.320–321,June2002.[9]V.Degalahal,N.Vijaykrishnan,andM.Irwin,“Analyzingsoft

errorsinleakageoptimizedSRAMdesign,”IEEEInternationalConferenceonVLSIDesign,pp.227–233,January2003.[10]M.Powell,S.-H.Yang,B.Falsa ,K.Roy,andT.N.Vijaykumar,

“Gated-Vdd:ACircuitTechniquetoReduceLeakageinDeep-submicronCacheMemories,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.90–95,July2000.[11]K.Flautner,N.S.Kim,S.Martin,D.Blaauw,andT.Mudge,

“DrowsyCaches:SimpleTechniquesforReducingLeakagePower,”ProceedingsoftheInternationalSymposiumonComputerArchitecture,pp.148–157,May2002.[12]S.WiltonandN.Jouppi,AnEnhancedAccessandCy-cleTimeModelforOn-ChipCaches.[Online].Availablehttp://www.77cn.com.cn/wrl/people/jouppi/CACTI.html.[13]NCStateUniversityCadenceToolInformation.[Online].Avail-ablehttp://www.cadence.ncsu.edu.[14]BerkeleyPredictiveTechnologyModel(BPTM).[Online].Avail-ablehttp://www-device.eecs.berkeley.edu/ ptm/.[15]N.Azizi,A.Moshovos,andF.Najm,“Low-LeakageAsymmetric-CellSRAM,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.48–51,August2002.[16]G.D.Micheli,SynthesisandOptimizationofDigitalCircuits.

USA:McGraw-HillInc.,1994.

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新建筑文档Pareto Points in SRAM Design Using the Sleepy Stack Approach全文阅读和word下载服务。

Pareto Points in SRAM Design Using the Sleepy Stack Approach.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/jiaoyu/1504137.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top