第一范文网 - 专业文章范例文档资料分享平台

生物化学重点内容(一) (5)

来源:用户分享 时间:2020-06-18 本文由哽喉的话 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

生物化学重点内容 1.自发因素:

(1)自发脱碱基:由于N-糖苷键的自发断裂,引起嘌呤或嘧啶碱基的脱落。 (2)(2)自发脱氨基:C自发脱氨基可生成U,A自发脱氨基可生成I。 (3)复制错配:由于复制时碱基配对错误引起的损伤。

2.物理因素:由紫外线、电离辐射、X射线等引起的DNA损伤。其中,X射线和电离辐射常常引起DNA链的断裂,而紫外线常常引起嘧啶二聚体的形成,如TT,TC,CC等二聚体。

3.化学因素:

(1)脱氨剂:如亚硝酸与亚硝酸盐,可加速C脱氨基生成U,A脱氨基生成I。 (2)烷基化剂:这是一类带有活性烷基的化合物,可提供甲基或其他烷基,引起碱基或磷酸基的烷基化,甚至可引起邻近碱基的交联。

(3)DNA加合剂:如苯并芘,在体内代谢后生成四羟苯并芘,与嘌呤共价结合引起损伤。

(4)碱基类似物:如5-FU,6-MP等,可掺入到DNA分子中引起损伤或突变。 (5)断链剂:如过氧化物,含巯基化合物等,可引起DNA链的断裂。 六、DNA突变的类型:

1.点突变:转换——相同类型碱基的取代。颠换——不同类型碱基的取代。插入——增加一个碱基。缺失——减少一个碱基。

2.复突变:插入—— 增加一段顺序。缺失—— 减少一段顺序。倒位—— 一段碱基顺序发生颠倒。易位—— 一段碱基顺序的位置发生改变。重组—— 一段碱基顺序与另一段碱基顺序发生交换。 七、DNA突变的效应:

1.同义突变:基因突变导致mRNA密码子第三位碱基的改变但不引起密码子意义的改变,其翻译产物中的氨基酸残基顺序不变。

2.误义突变:基因突变导致mRNA密码子碱基被置换,其意义发生改变,翻译产物中的氨基酸残基顺序发生改变。

3.无义突变:基因突变导致mRNA密码子碱基被置换而改变成终止暗码子,引起多肽链合成的终止。

4.移码突变:基因突变导致mRNA密码子碱基被置换,引起突变点之后的氨基酸残基顺序全部发生改变。 八、DNA损伤的修复:

46

生物化学重点内容 DNA损伤的修复方式可分为直接修复和取代修复两大类。直接修复包括光复活、转甲基作用和直接连接作用,均属于无差错修复。取代修复包括切除修复、重组修复和SOS修复,后二者属于有差错倾向修复。

1.光复活:由光复活酶识别嘧啶二聚体并与之结合形成复合物,在可见光照射下,酶获得能量,将嘧啶二聚体的丁酰环打开,使之完全修复。

2.转甲基作用:在转甲基酶的催化下,将DNA上的被修饰的甲基去除。此时,转甲基酶自身被甲基化而失活。

3.直接连接:DNA断裂形成的缺口,可以在DNA连接酶的催化下,直接进行连接而封闭缺口。

4.切除修复:这种修复机制可适用于多种DNA损伤的修复。该修复机制可以分别由两种不同的酶来

发动,一种是核酸内切酶,另一种是DNA糖苷酶。①特异性的核酸内切酶(如原核中的UvrA、UvrB和UvrC)或DNA糖苷酶识别DNA受损伤的部位,并在该部位的5′端作一切口;②由核酸外切酶(或DNA聚合酶Ⅰ)从5′→3′端逐一切除损伤的单链;③在DNA聚合酶的催化下,以互补链为模板,合成新的单链片段以填补缺口;④由DNA连接酶催化连接片段,封闭缺口。

5.重组修复:①DNA复制时,损伤部位导致子链DNA合成障碍,形成空缺;②此空缺诱导产生重组酶(重组蛋白RecA),该酶与空缺区结合,并催化子链空缺与对侧亲链进行重组交换;③对侧亲链产生的空缺以互补的子链为模板,在DNA聚合酶和连接酶的催化下,重新修复缺口;④亲链上的损伤部位继续保留或以切除修复方式加以修复。

6.SOS修复:这是一种在DNA分子受到较大范围损伤并且使复制受到抑制时出现的修复机制,以SOS借喻细胞处于危急状态。 九、逆转录

1. 逆转录:以RNA为模板合成DNA。 2. 逆转录酶具有多种酶的活性。

第十二章 RNA的生物合成

一、RNA转录合成的特点:

在RNA聚合酶的催化下,以一段DNA链为模板合成RNA,从而将DNA所携带的遗传信息传递给RNA的过程称为转录。经转录生成的RNA有多种,主要的是rRNA,tRNA,mRNA,snRNA和HnRNA。

47

生物化学重点内容 1.转录的不对称性:指以双链DNA中的一条链作为模板进行转录,从而将遗传信息由DNA传递给RNA。对于不同的基因来说,其转录信息可以存在于两条不同的DNA链上。能够转录RNA的那条DNA链称为模板链,而与之互补的另一条DNA链称为编码链。

2.转录的连续性:RNA转录合成时,在RNA聚合酶的催化下,连续合成一段RNA链,各条RNA链之间无需再进行连接。

3.转录的单向性:RNA转录合成时,只向一个方向进行聚合,方向为5′→3′。 4.有特定的起始和终止位点:RNA转录合成时,只能以DNA分子中的某一段作为模板,故存在特定的起始位点和特定的终止位点。 二、RNA转录合成的条件:

1.底物:四种核糖核苷酸,即ATP,GTP,CTP,UTP。 2.模板:以一段单链DNA作为模板。

3.RNA聚合酶(DDRP): RNA聚合酶在单链DNA模板以及四种核糖核苷酸存在的条件下,不需要引物,即可从5′→3′聚合RNA。

原核生物中的RNA聚合酶全酶由五个亚基构成,即α2ββ′ζ。ζ亚基与转录起始点的识别有关,而在转录合成开始后被释放,余下的部分(α2ββ′)被称为核心酶,与RNA链的聚合有关。

真核生物中的RNA聚合酶分为三种:RNA polⅠ存在于核仁,对α-鹅膏蕈碱不敏感,用于合成rRNA前体;RNA polⅡ存在于核基质,对α-鹅膏蕈碱极敏感,用于合成HnRNA;RNA polⅢ存在于核基质,对α-鹅膏蕈碱敏感,用于合成tRNA前体、snRNA及5S rRNA。

4.终止因子ρ蛋白:这是一种六聚体的蛋白质,能识别终止信号,并能与RNA紧密结合,导致RNA的释放。

5.激活因子:降解产物基因激活蛋白(CAP),又称为cAMP受体蛋白(CRP),是一种二聚体蛋白质。该蛋白与cAMP结合后,刺激RNA聚合酶与起始部位结合,从而起始转录过程。

三、RNA转录合成的基本过程:

1.识别:RNA聚合酶中的ζ因子识别转录起始点,并促使核心酶结合形成全酶复合物。

位于基因上游,与RNA聚合酶识别、结合并起始转录有关的一些DNA顺序称为启动子。在原核生物中的启动子通常长约60bp,存在两段带共性的顺序,即5′-TTGACA-3′和5′-TATAATG-3′,其中富含TA的顺序被称为Pribnow盒。真核生物的启动子中也存在一段富含TA的顺序,被称为Hogness盒或TATA盒。

2.起始:RNA聚合酶全酶促使局部双链解开,并催化ATP或GTP与另外一个三磷酸核苷聚合,形成第一个3′,5′-磷酸二酯键。

48

生物化学重点内容

3.延长:ζ因子从全酶上脱离,余下的核心酶继续沿DNA链移动,按照碱基互补原则,不断聚合RNA。

4.终止:RNA转录合成的终止机制有两种。

(1)自动终止:模板DNA链在接近转录终止点处存在相连的富含GC和AT的区域,使RNA转录产物形成寡聚U及发夹形的二级结构,引起RNA聚合酶变构及移动停止,导致RNA转录的终止。

(2)依赖辅助因子的终止:由终止因子(ρ蛋白)识别特异的终止信号,并促使RNA的释放。

四、真核生物RNA转录后的加工修饰:

1.mRNA的转录后加工:

(1)加帽:即在mRNA的5′-端加上mGTP的结构。此过程发生在细胞核内,即对HnRNA进行加帽。加工过程首先是在磷酸酶的作用下,将5′-端的磷酸基水解,然后再加上鸟苷三磷酸,形成GpppN的结构,再对G进行甲基化。

(2)加尾:这一过程也是细胞核内完成,首先由核酸外切酶切去3′-端一些过剩的核苷酸,然后再加入polyA。

(3)剪接:真核生物中的结构基因基本上都是断裂基因。结构基因中能够指导多肽链合成的编码顺序被称为外显子,而不能指导多肽链合成的非编码顺序就被称为内含子。真核生物HnRNA的剪接一般需snRNA参与构成的核蛋白体参加,通过形成套索状结构而将内含子切除掉。

(4)内部甲基化:由甲基化酶催化,对某些碱基进行甲基化处理。 (5)编辑:插入或删除个别核苷酸。

2.tRNA的转录后加工:主要加工方式是切断和碱基修饰。 3.rRNA的转录后加工:主要加工方式是切断。

7

第十三章 蛋白质的生物合成

一、蛋白质生物合成体系:

生物体内的各种蛋白质都是生物体利用约20种氨基酸为原料自行合成的。蛋白质的生物合成过程,就是将DNA传递给mRNA的遗传信息,再具体的解译为蛋白质中氨基酸排列顺序的过程,这一过程被称为翻译(translation)。参与蛋白质生物合成的各种因素构成了蛋白质合成体系,该体系包括:

1.mRNA:作为指导蛋白质生物合成的模板。

49

生物化学重点内容 mRNA中每三个相邻的核苷酸组成三联体,代表一个氨基酸的信息,此三联体就称为密码。共有64种不同的密码。遗传密码具有以下特点:① 连续性;② 简并性;③ 通用性;④ 方向性;⑤ 摆动性;⑥ 起始密码:AUG;终止密码:UAA、UAG、UGA。

2.tRNA:在氨基酸tRNA合成酶催化下,特定的tRNA可与相应的氨基酸结合,生成氨基酰tRNA,从而携带氨基酸参与蛋白质的生物合成。

tRNA反密码环中部的三个核苷酸构成三联体,可以识别mRNA上相应的密码,此三联体就称为反密码。 反密码对密码的识别,通常也是根据碱基互补原则,即A—U,G—C配对。但反密码的第一个核苷酸与第三核苷酸之间的配对,并不严格遵循碱基互补原则,这种配对称为不稳定配对。

能够识别mRNA中5′端起动密码AUG的tRNA称为起动tRNA。在原核生物中,起动tRNA是tRNAfmet;而在真核生物中,起动tRNA是tRNAmet。

3.rRNA和核蛋白体:原核生物中的核蛋白体大小为70S,可分为30S小亚基和50S大亚基。真核生物中的核蛋白体大小为80S,也分为40S小亚基和60S大亚基。核蛋白体的大、小亚基分别有不同的功能:

(1)小亚基:可与mRNA、GTP和起动tRNA结合。

(2)大亚基:①具有两个不同的tRNA结合点。A位—— 受位或氨酰基位,可与新进入的氨基酰tRNA结合;P位——给位或肽酰基位,可与延伸中的肽酰基tRNA结合。②具有转肽酶活性。

在蛋白质生物合成过程中,常常由若干核蛋白体结合在同一mRNA分子上,同时进行翻译。由若干核蛋白体结合在一条mRNA上同时进行多肽链的翻译所形成的念球状结构称为多核蛋白体。

4.起动因子(IF):这是一些与多肽链合成起动有关的蛋白因子。原核生物中存在3种起动因子,分别称为IF1-3。在真核生物中存在9种起动因子(eIF)。其作用主要是促进核蛋白体小亚基与起动tRNA及模板mRNA结合。

5.延长因子(EF):原核生物中存在3种延长因子(EFTU,EFTS,EFG),真核生物中存在2种(EF1,EF2)。其作用主要促使氨基酰tRNA进入核蛋白的受体,并促进移位过程。

6.释放因子(RF):原核生物中有4种,在真核生物中只有1种。其主要作用是识别终止密码,协助多肽链的释放。

7.氨基酰tRNA合成酶:该酶存在于胞液,与特异氨基酸的活化以及氨基酰tRNA的合成有关。每种氨基酰tRNA合成酶对相应氨基酸及携带氨基酸的数种tRNA具有高度特异性。

二、蛋白质生物合成过程:

50

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技生物化学重点内容(一) (5)全文阅读和word下载服务。

生物化学重点内容(一) (5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1083234.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top