第一范文网 - 专业文章范例文档资料分享平台

天然气合成氨年产19万吨 设计说明书 - 图文 (3)

来源:用户分享 时间:2020-06-18 本文由没有之后 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

《化工设计》

CO+H2O→CO2+H2 ΔH 298=-41.20kJ/mol

在不同温度下分两步进行,第一步是高温变换(简称高变)使大部分CO转化为CO2和H2,第二步是低温变换简称低变,将CO含量降到0.3%左右。因此,CO变换既是原料气制造的继续,又是净化的过程。

2.4 设计方案的确定

合成氨生产的原料有焦炭、煤、焦炉气、天然气、石脑油、重油等。本设计选择天然气作为原料,主要考虑到我国天然气资源丰富及清洁节能等原因,详如下述。

首先,我国天然气资源比较丰富,新疆地区有得天独厚的区位优势。地质资源总量约38~39万亿立方米,列世界第十位,其中陆上30万亿立方米,海上9万亿立方米。已探明储量约1.9万亿立方米,仅占资源总量的5%左右,列世界第16位,天然气资源勘探潜力很大。近年来我国天然气勘探取得了重大突破,陆上已在新疆、陕甘宁、川渝和青海形成四大气区;海上气田以渤海、南海西部地区和东海西湖凹陷作为重点勘探和增加产量的地区。新疆天然气资源也十分丰富,所以在选择天然气作为原料合成氨有着明显的区位优势。

其次,我国天然气工业高速发展方兴未艾。据最新的《石油与勘探开发》介绍,目前,我国天然气工业正处于发展高峰时期,且发展速度越来越快。近年来,国家对环境问题越来越重视。天然气作为一种清洁优质的能源,在我国改善能源结构,以及我国在大力推动低碳经济发展的过程中,获得了前所未有的大发展。无论是在传统的天然气产区,还是在新的天然气勘探开发区,近几年,我国天然气工业的发展都呈现出前所未有的良好态势。我国将大力提高天然气在我国能源消费结构中的比重。天然气作为化石能源中污染最少的能源,热值相应高于煤炭与石油。在目前我国的能源消费结构里,煤炭占67%,石油占20%,而天然气却只占3.4%,远低于23.5%的世界平均水平。加大天然气在能源消费结构中的比重,既有利于促进节能减排,又能够维持经济与社会可持续发展。

第三,以天然气为原料合成氨工艺比重油和煤为原料的工艺成本低,而且能耗低。根据计算,若大型氨厂分别用石脑油、渣油、天然气和煤为原料制氨,其价格分别按1800元/t、1400元/t、1.20元/m3和260元/t计,中压蒸汽价格按78元/t计,对应的合成氨成本分别为1721元/t、1557元/t、1493元/t和1021元/t。可见,在这4种原料中,以煤为原料制氨成本最低,然而,以煤为原料合成氨能耗远大于天然气。天然气工艺技术目前最可靠,天然气合成氨工艺成熟、生产可靠、连续。煤头技术中,固定层气化流程,虽然工艺成熟,但气化消耗高,环保污染严重、难以达标、厂区环境恶劣。

8

《化工设计》

第三章 合成氨工艺论证

3.1 氨合成过程的基本工艺步骤

实现氨合成的循环,必须包括如下几个步骤:氮氢原料气的压缩并补入循环系统;循环气的预热与氨的合成;氨的分离;热能的回收利用;对未反应气体补充压力并循环使用,排放部分循环气以维持循环气中惰性气体的平衡等。

由于采用压缩机的型式、氨分冷凝级数、热能回收形式以及各部分相对位置的差异,而形成不同的工业生产流程,但实现氨合成过程的基本工艺步骤是相同的。

(1)气体的压缩和除油

为了将新鲜原料气和循环气压缩到氨合成所要求的操作压力,就需要在流程中设置压缩机。当使用往复式压缩机时,在压缩过程中气体夹带的润滑油和水蒸汽混合在一起,呈细雾状悬浮在气流中。气体中所含的油不仅会使氨合成催化剂中毒、而且附着在热交换器壁上,降低传热效率,因此必须清除干净。除油的方法是压缩机每段出口处设置油分离器,并在氨合成系统设置滤油器。若采用离心式压缩机或采用无油润滑的往复式压缩机,气体中不含油水,可以取消滤油设备,简化了流程。

(2)气体的预热和合成

压缩后的氢氮混合气需加热到催化剂的起始活性温度,才能送入催化剂层进行氨合成反应。在正常操作的情况下,加热气体的热源主要是利用氨合成时放出的反应热,即在换热器中反应前的氢氮混合气被反应后的高温气体预热到反应温度。在开工或反应不能自热时,可利用塔内电加热炉或塔外加热炉供给热量。

(3)氨的分离

进入氨合成塔催化层的氢氮混合气,只有少部分起反应生成氨,合成塔出口气体氨含量一般为10~20%,因此需要将氨分离出来。氨分离的方法有两种,一是水吸收法;二是冷凝法,将合成后气体降温,使其中的气氮冷凝成液氨,然后在氨分离器中,从不凝气体中分离出来。

目前工业上主要采用冷凝法分离循环气中的氨。以水和氨冷却气体的过程是在水冷器和氨冷器中进行的。在水冷器和氨冷器之后设置氨分离器,把冷凝下来的液氨从气相中分离出来,经减压后送至液氮贮槽。在氨冷凝过程,部分氢氮气及惰性气体溶解在液氨中。当液氨在贮槽内减压后,溶解的气体大部分释放出来,通常称为“贮罐气”。

(4)气体的循环

氢氮混合气经过氨合成塔以后,只有一小部分合成为氨。分离氨后剩余的氢氮气,除为降低情性气体含量而少量放空以外,与新鲜原料气混合后,重新返回

9

《化工设计》

合成塔,再进行氨的合成,从而构成了循环法生产流程。由于气体在设备、管道中流动时,产生了压力损失。为补偿这一损失,流程中必须设置循环压缩机。循环机进出口压差约为20~30大气压,它表示了整个合成循环系统阻力降的大小。

(5)惰性气体的排除

氨合成循环系统的情性气体通过以下三个途径带出:(1)一小部分从系统中漏损;(2)一小部分溶解在液氨中被带走;(3)大部分采用放空的办法,即间断或连续地从系统中排放。

在氨合成循环系统中,流程中各部位的惰性气体含量是不同的,放空位置应该选择在惰性气体含量最大而氨含量最小的地方,这样放空的损失最小。由此可见,放空的位置应该在氨已大部分分离之后,而又在新鲜气加入之前。放空气中的氨可用水吸收法或冷凝法加以回收,其余的气体一股可用作燃料。也可采用冷凝法将放空气中的甲烷分离出来,得到氢、氮气,然后将甲烷转化为氢,回收利用,从而降低原料气的消耗。

有些工厂设置二循环合成系统,合成系统放空气进入二循环系统的合成塔,继续进行合成反应,分离氨后部分情性气体放空,其余部分在二循环系统继续循环。这样,提高了放空气中惰性气体含量,从而减少了氢氮气损失。

(6)反应热的回收利用

氨的合成反应是放热反应,必须回收利用这部分反应热。目前回收利用反应热的方法主要有以下几种:

(1) 预热反应前的氢氮混合气。在塔内设置换热器,用反应后的高温气体预热反应前的氢氮混合气,使其达到催化剂的活性温度。这种方法简单,但热量回收不完全。目前小型氨厂及部分中型氨厂采用此法回收利用反应热。

(2) 预热反应前的氢氮混合气和副产蒸汽。既在塔内设置换热器预热反应前的氢氮混合气,又利用余热副产蒸汽。按副产蒸汽锅炉安装位置的不同,可分为塔内副产蒸汽合成塔(内置式)和塔外副产蒸汽合成塔(外置式)两类。目前一般采用外置式,该法热量回收比较完全,同时得到了副产蒸汽,目前中型氮厂应用较多。

(3)预热反应前的氢氮混合气和预热高压锅炉给水。反应后的高温气体首先通过塔内则换热器预热反应前的氢氮混合气,然后再通过塔外的换热器预热高压锅炉给水。此法的优点是减少了塔内换器的面积,从而减小了塔的体积,同时热能回收完全。目前大型合成氨厂一般采用这种方法回收热量。用副产蒸汽及预热高压锅炉给水方式回收反应热时,生产一吨氨一般可回收0.5~0.9吨蒸汽。

3.2氨合产工艺的选择

考虑氨合成工段的工艺和设备问题时,必须遵循三个原则:一是有利于氨的合成和分离;二是有利于保护催化剂,尽量延长使用寿命;三是有利于余热回收

10

《化工设计》

降低能耗。

氨合成工艺选择主要考虑合成压力、合成塔结构型式及热回收方法。氨合成压力高对合成反应有利, 但能耗高。中压法技术比较成熟,经济性比较好,在15~30Pa的范围内,功耗的差别是不大的,因此世界上采用此法的很多。 一般中小氮肥厂多为32MPa , 大型厂压力较低,为10~20MPa。由于近来低温氨催化剂的出现, 可使合成压力降低。

合成反应热回收是必需的, 是节能的主要方式之一。除尽可能提高热回收率,多产蒸汽外, 应考虑提高回收热的位能, 即提高回收蒸汽的压力及过热度。高压过热蒸汽的价值较高, 当然投资要多, 根据整体流程统一考虑。

本次设计选用中压法(压力为32MPa)合成氨流程,采用预热反应前的氢氮混合气和副产蒸汽的方法回收反应热,塔型选择见设备选型部分。

本设计主要是转化和变换工序的工艺设计,所选流程为:

压缩 脱硫 一段转化 天然气

变换气去甲烷

低温变化 高温变化 空气 压缩 二段转化 天然气 天然气蒸汽转化和变换工序是合成氨生产中的第一步,也是较为关键的一步,因为能否正常生产出合格的变换气,是后面的所有工序正常运转的前提条件。在本设计中,甲烷和其他烃类转化为CO和H2的转化工序采用的是两段炉催化转化,经过二段转化后,甲烷含量约为0.5%左右。CO变换工序采用了高变串低变的工艺流程路线,经过低温变换后的气体中CO含量为0.4%左右。

3.3工艺参数的确定

以天然气为原料合成氨生产装置转化变换工序设计,其主要参数是一、二段转化工艺和CO高-低变串联流程的温度和压力。天然气经加氢脱硫,出口总硫量小于0.5ppm后,在压力3.03MPa、温度380℃左右的条件下配入中压蒸汽达到水碳比为3.5(R=3.5),进入一段转化炉的对流段加热,气体一边加热一边反应,出反应管的温度在822℃左右,最后沿集气管中间的上升管上升,继续吸收一些热量,使温度升到850℃左右,经输气总管送往二段转化炉。

11

《化工设计》

工艺空气经压缩机压到3.3~3.5 MPa,也配入少量水蒸气,然后进入对流段的工艺空气加热盘预热到480℃左右,进入二段炉顶部与一段转化气汇合,在顶部燃烧区燃烧、放热,温度升到1200℃左右,在通过催化剂床层时继续反应并吸收热量,离开二段转化炉的温度约为1000℃左右,压力为3.0 MPa,所得混合气残余甲烷含量约为0.3%。

经二段转化后的合成气送入第一换热器,接着又送入第二换热器,使合成气温度由1003℃降到360℃左右,利用这些能量制取高压蒸汽。从第二换热器出来的气体继续送往变换工序处理。

含CO的原料合成气经换热器降温,在压力3.0 MPa、温度371℃下进入高变炉(因原料气中水蒸气含量较高,一般不需要加蒸汽)。经高变处理后,气体中CO降到3.0%左右,温度为425~440℃。气体通过高变废热锅炉,冷却到336℃左右,锅炉产生10.0MPa的饱和蒸汽。由于此时气体温度还不能进行低温变换,于是将变换气用来加热其它工艺气体,而变换气被冷却到241℃后进入低变炉。经低变处理后,气体残余CO降到0.3%~0.5%之间,再送入后续工段继续净化。

1.2.3.4.5.——精炼气 6.7.8.9.10.11.12.14.17.18.——合成气; 13——放空气 20——弛放气 15.16.19.21——液氨

图 计算物料点流程

第四章 工艺计算

12

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技天然气合成氨年产19万吨 设计说明书 - 图文 (3)全文阅读和word下载服务。

天然气合成氨年产19万吨 设计说明书 - 图文 (3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1083794.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top