第一章 统计数据的收集与整理
1.1 算术平均数是怎样计算的?为什么要计算平均数?
n答:算数平均数由下式计算:或是说是样本数据的代表。
y??yi?1in,含义为将全部观测值相加再被观测值的个数
除,所得之商称为算术平均数。计算算数平均数的目的,是用平均数表示样本数据的集中点,
1.2 既然方差和标准差都是衡量数据变异程度的,有了方差为什么还要计算标准差? 答:标准差的单位与数据的原始单位一致,能更直观地反映数据地离散程度。
1.3 标准差是描述数据变异程度的量,变异系数也是描述数据变异程度的量,两者之间有什么不同?
答:变异系数可以说是用平均数标准化了的标准差。在比较两个平均数不同的样本时所得结果更可靠。
1.4 完整地描述一组数据需要哪几个特征数? 答:平均数、标准差、偏斜度和峭度。
1.7 从一个有限总体中采用非放回式抽样,所得到的样本是简单的随机样本吗?为什么?本课程要求的样本都是随机样本,应当采用哪种抽样方法,才能获得一随机样本?
答:不是简单的随机样本。从一个有限总体中以非放回式抽样方法抽样,在前后两次抽样之间不是相互独立的,后一次的抽样结果与前一次抽样的结果有关联,因此不是随机样本。应采用随机抽样的方法抽取样本,具体说应当采用放回式抽样。
i?11.8 证明i?1编码时,前式是否仍然相等?
??y??y?????y2inni?y?,2其中yi??yi?C。若用
yi??yiC或yi??Cyi?答:(1)令 yi?yi?C
则 y??y?C 平均数特性之③。
2????y?y?ii?1nn????yi?C???y?C??i?1n2
yyi??iC (2) 令 则
???yi?y?i?12
y??yC 平均数特性之②。
n2????y?y?ii?1ny??y???i??C?i?1?C?2??yi?1ni?y?22C
用第二种编码方式编码结果,两式不再相等。
1.9 有一个样本:y1,y2,?,yn,设B为其中任意一个数值。证明只有当B?y时,
n??y?B?i?12最小。这是平均数的一个重要特性,在后面讲到一元线型回归时还会用到
2该特性。
???y?B?2?0??p?y?B??B答:令 , 为求使p达最小之B,令
?y?y2??y?B??0B?n则 。
第二章 概率和概率分布
2.2 每个人的一对第1号染色体分别来自祖母和外祖母的概率是多少?一位男性的X染色体来自外祖父的概率是多少?来自祖父的概率呢?
答: (1)设A为一对第1号染色体分别来自祖母和外祖母的事件,则
111P?A??1??1??224
P?B??1?11?22
(2)设B为男性的X染色体来自外祖父的事件,则
(3)设C为男性的X染色体来自祖父的事件,则
P?C??0
2.3 假如父母的基因型分别为IAi和IBi 。他们的两个孩子都是A型血的概率是多少?他们生两个O型血女孩的概率是多少?
答:父: 母:
PI?配子?P?i配子??PI?配子?P?i配子????12 12
??
?1?P?两名?型血子女??P??型血?P??型血??PI?iPI?i?4??????P?I?P?i?P?I?P?i?
?2??1?????2?1?16 11P?两名?型血女儿??P??型血?P??型血?2211?P?ii?P?ii?2211?P?i?P?i?P?i?P?i?22
?1?????2?1?646
2.4 白化病是一种隐性遗传病,当隐性基因纯合时(aa)即发病。已知杂合子(Aa)在群体中的频率为1 / 70,问一对夫妻生出一名白化病患儿的概率是多少?假如妻子是白化病患者,她生出白化病患儿的概率又是多少?
答:(1)已知 所以
P?Aa??170P?aaAa?Aa??14
P?Aa?Aa且生一名aa??P?Aa?Aa?P?aaAa?Aa??P?Aa?P?Aa?P?aaAa?Aa??1??1??1?????????70??70??4?1? 19600
11P?Aa??P?aaaa?Aa??702 (2)已知
所以
?P?aa?Aa?P?aaaa?Aa??P?aa?P?Aa?P?aaaa?Aa??1??1???1??????70??2?1? 140P?aa?Aa且生一名aa?
2.5 在图2-3中,III1为Aa个体,a在群体中的频率极低,可排除a多于一次进入该系谱的可能性,问III2亦为a的携带者的概率是多少?
答:设:事件A:III1含a, 事件B:II2含a, 事件C:I3含a, 事件D:II2含a, 事件E:III2含a, 事件C’:I4含a,
图 2-3
P?A??1?1?1P?AB??P?A?P?BA???1?????2?2
?1??1?1P?ABC??P?AB?P?CAB????????2??2?4?1??1??1?1P?ABCD??P?ABC?P?DABC??????????2??2??2?8?1??1??1??1?1P?ABCDE??P?ABCD?P?EABCD????????????2??2??2??2?16
同理可得:
?1??1??1??1?1P?ABC'DE??P?ABC'D?P?EABC'D????????????2??2??2??2?16
故III2含a总的概率为:
的概率是多少?
答:1.共有16种基因型,为16个基本事件。
AABB AAbB AABb AAbb AaBB AabB AaBb Aabb
2.可举出的事件及其概率:
aABB aABb aaBB aaBb
aAbB aAbb aabB aabb
P?111??16168
2.6 一个杂合子AaBb自交,子代基因型中有哪些基本事件?可举出哪些事件?各事件
A1: 包含四个显性基因 = {AABB}
A2: 包含三个显性基因 = {AABb, AAbB, AaBB, aABB}
4P?A2??16
A3: 至少包含三个显性基因 = { AABb, AAbB, AaBB, aABB, AABB}
P?A1??116
A4: 包含两个显性基因 = {AaBb, AabB, aABb, aAbB, AAbb, aaBB}
A5: 至少包含两个显性基因 = {AaBb, AabB, aABb, aAbB, AAbb, aaBB AABb, AAbB, AaBB, aABB, AABB}
A6: 包含两个不同的显性基因 = {AaBb, AabB, aABb, aAbB}
A7: 包含两个相同的显性基因 = {AAbb, aaBB}
P?A3??516 616
P?A4??P?A5??1116 416 216
P?A6??P?A7???
2.7 一对表型正常的夫妻共有四名子女,其中第一个是隐性遗传病患者。问其余三名表型正常的子女是隐性基因携带者的概率是多少?
答:样本空间W = {AA, Aa, aA}
2.8 自毁容貌综合征是一种X连锁隐性遗传病,图2-4是一个自毁容貌综合征患者
的家系图。该家系中III2的两位舅父患有该病,III2想知道她的儿子患该病的概率是多少?(提示:用Bayes定理计算II5在已生四名正常男孩的条件下是携带者的条件概率)
答:若IV1是患者,III2必定是携带者,II5
亦必定是携带者。已知II2和II3为患者,说明I2为杂合子,这时II5可能是显性纯合子也可能是杂合子。称II5是杂合子这一事件为A1,II5是显性纯合子这一事件为A2,则:
P?隐性基因携带者??23
11P?A2??22
设II5生4名正常男孩的事件为事件B,则II5为杂合子的条件下,生4名正常男孩 (III3
P?A1??至III6)的概率为:
1?1?P?BA1??????2?16
4II5为显性纯合子的条件下,生4名正常男孩的概率为:
2
将以上各概率代入Bayes公式,可以得出在已生4名正常男孩条件下,II5为杂合子的
P?BA??1
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新小学教育生物统计学答案 全文阅读和word下载服务。
相关推荐: