人教版七年级数学上册期末复习知识点大全
doc
一、选择题
1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A .垂线段最短
B .经过一点有无数条直线
C .两点之间,线段最短
D .经过两点,有且仅有一条直线
2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )
A .a >b
B .﹣ab <0
C .|a |<|b |
D .a <﹣b
3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14
多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12
BQ 时,t =12,其中正确结论的个数是( )
A .0
B .1
C .2
D .3
4.下列判断正确的是( )
A .有理数的绝对值一定是正数.
B .如果两个数的绝对值相等,那么这两个数相等.
C .如果一个数是正数,那么这个数的绝对值是它本身.
D .如果一个数的绝对值是它本身,那么这个数是正数.
5.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )
A .410 +415x -=1
B .410 +415x +=1
C .410x + +415=1
D .410x + +15
x =1 6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3
P ?,如图所示排列,根据这个规律,点2014P 落在( )
A.射线OA上B.射线OB上C.射线OC上D.射线OD上
7.互不相等的三个有理数a,b,c在数轴上对应的点分别为A,B,C。若:
||||||
a b b c a c
-+-=-,则点B()
A.在点 A, C 右边B.在点 A, C 左边C.在点 A, C 之间
D.以上都有可能8.用代数式表示“m的两倍与n平方的差”,正确的是 ( )
A.2
2()
m n
-B.2
(2m-n)C.2
2m n
-D.2
(2)
m n
-
9.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()
A.3 B.﹣3 C.1 D.﹣1
10.计算:2.5°=()
A.15′B.25′C.150′D.250′
11.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为()
A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60 12.下列各组数中,互为相反数的是( )
A.2与
1
2
B.2
(1)
-与1 C.2与-2 D.-1与21-
13.已知105
A
∠=?,则A
∠的补角等于()
A.105?B.75?C.115?D.95?
14.下列计算正确的是()
A.3a+2b=5ab B.4m2n-2mn2=2mn
C.-12x+7x=-5x D.5y2-3y2=2
15.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN 的长度为()cm.
A.2 B.3 C.4 D.6
二、填空题
16.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.
17.已知|x|=3,y2=4,且x<y,那么x+y的值是_____.
18.根据下列图示的对话,则代数式2a+2b﹣3c+2m的值是_____.
19.把四张形状大小完全相同的小长方形卡片(如图
1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.
20.36.35?=__________.(用度、分、秒表示)
21. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段
AC =________cm.
22.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
23.因式分解:32x xy -= ▲ .
24.计算221b a a b a b ??÷- ?-+??
的结果是______ 25.15030'的补角是______.
26.16的算术平方根是 .
27.如果一个数的平方根等于这个数本身,那么这个数是_____.
28.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.
29.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).
30.五边形从某一个顶点出发可以引_____条对角线.
三、压轴题
31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .
(1)如图1,若点F 与点G 重合,求∠MEN 的度数;
(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;
(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.
32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别
作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.
特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.
(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.
发现感悟
解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:
小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.
小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.
(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.
类比拓展
受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.
(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.
33.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,12
2x x +,123
3x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的
最佳值.例如,对于数列2,-1,3,因为|2|=2,()
212+-=12,()2133
+-+=43,所以数列2,-1,3的最佳值为12
. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相
应的最佳值.如数列-1,
2,3的最佳值为
1
2
;数列3,
-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为
1
2
.根据以上材料,回答下列问题:
(1)数列-4,-3,1的最佳值为
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);
(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.
34.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
请根据上述规定回答下列问题:
(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;
(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;
(3)若点E在数轴上(不与A、B重合),满足BE=
1
2
AE,且此时点E为点A、B的“n节点”,求n的值.
35.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:
说明:[)
a,b表示在范围a b
~中,可以取到a,不能取到b.
根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.
例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()
900150%30480
?-+=元,实际付款420元.
(购买商品得到的优惠率100%)
=?
购买商品获得的总优惠额
商品的标价
,
请问:
()
1购买一件标价为500元的商品,顾客的实际付款是多少元?
()2购买一件商品,实际付款375元,那么它的标价为多少元?
()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.
36.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)
(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:
(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQ AB
的值.
(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2
=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②
MN AB
的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
37.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)
()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)
()2当点C 、D 运动了2s ,求AC MD +的值.
()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)
()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB
的值.
38.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.
(1)若AC=4cm ,求DE 的长;
(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【详解】
用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选C.
【点睛】
根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
2.D
解析:D
【解析】
【分析】
根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.
【详解】
解:∵由图可知a<0<b,
∴ab<0,即-ab>0
又∵|a|>|b|,
∴a<﹣b.
故选:D.
【点睛】
本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.C
解析:C
【解析】
【分析】
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新小学教育人教版七年级数学上册期末复习知识点大全doc全文阅读和word下载服务。
相关推荐: