第二章 插值(第6页/共9页)
再构造次数不高于2n?1的多项式hi,2n?1(x)满足下列2n个条件:
??1,i?j,j?1,2,?,n?hi,2n?1(xj)??ij???, ?0,i?j?hi?,2n?1(xj)?0,j?1,2,?,n?(x?x1)2?(x?xi?1)2(x?xi?1)2?(x?xn)2令:hi,2n?1(x)?(ax?b) 22222(xi?x1)(xi?x2)?(xi?xi?1)(xi?xi?1)?(xi?xn)它满足上述条件中除hi?,2n?1(xi)?0,hi,2n?1(xi)?1外的所有其他条件,于是再由
hi,2n?1(xi)?axi?b?1,?(x?x1)?(x?xi?1)(x?xi?1)?(x?xn)?hi?,2n?1(xi)?a?(axi?b)?2222??(xi?x1)?(xi?xi?1)(xi?xi?1)?(xi?xn)?n2?a???0x?xj?1ijj?i2222?x?xi
n22所以a???,b?1?axi?1???xi,于是:
x?xx?xj?1ij?1ijjj?ij?in??n(x?x1)2?(x?xi?1)2(x?xi?1)2?(x?xn)21?? hi,2n?1(x)?1?2(xi?x)?2222??(xi?x1)?(xi?xi?1)(xi?xi?1)?(xi?xn)j?1xi?xj??j?i??于是所求的埃尔米特插值多项式为
nnH2n?1(x)??hi,2n?1(x)f(xi)??Hi,2n?1(x)f?(xi)
i?1i?1其余项为:
f(x)?H2n?1(x)?f(x1,x1,x2,x2,?,xn,xn,x)?(x?xi)2i?1n?f(?)(x?xi)2?(2n)!i?1n(2n)
13.找一个5次Hermite多项式H5(x),满足
(j)H5(xi)?f(j)(xi),i?1,2;j?0,1,2.
并估计余项。
解:由差商表:(略)
第二章 插值(第7页/共9页)
f??(x1)(x?x1)2?2!??f?(x2)?3f(x1,x2)?2f?(x1)?12f(x1)(x2?x1)?(x?x1)3(x?x2)3(x2?x1)????6f(x1,x2)?3f?(x1)?3f?(x2)?1322(f(x1)?f(x2))(x2?x1)?(x?x)(x?x)12(x2?x1)4H5(x)?f(x1)?f?(x1)(x?x1)?其余项为:
f(x1,x2)?f?(x1)?1f??(x1)(x2?x1)2(x?x1)32(x2?x1)f(6)(?)2f(x)?H5(x)?f(x1,x1,x1,x2,x2,x2,x)(x?x1)(x?x2)?(x?xi)3 ?(6)!i?133?A1????A2?mm14.证明(34)式成立,即证明 det????(yj?yi)ji
???1?i?j?s?A??s?证明:因为:Ai(k)?1l1(x1(,ik))?(i)l1(x1(,ik),x2?0,k)?????(i)?0l1(x1(,ik),?,xm)i,k???ln(x1(,ik))?(i)(i)?ln(x1,k,x2,k)??
???(i)(i)?ln(x1,k,?,xmi,k)???ln(x1(,ik))??(i)?ln(x2,k)?,故
????(i)?ln(xmi,k)???1l1(x1(,ik))?(i)?1l1(x21,k)???(i)(i)?(x?x)?l,km,k?1?m?l?mi(i)?1l1(xm)i,k??A1(k)??A1??(k)????A?1?A?det?2??limdet?2??limsk??k???(i)?????(x??l,k?A??A(k)?i?11?m?l?mi?s??s??1l1(x1(,1k))?(1)?1l1(x2,k)????(1)?1l1(xm)1,kdet??(i)???xm),k?1l1(x1(,sk))?????1l(x(s))1ms,k?mjmi????????ln(x1(,1k))??(1)ln(x2,k)????(1)ln(xm1k)????
ln(x1(,sk))????(s)ln(xm)?s,k??limk??1?i?j?sm?1l?1?(j)(i)??(xm,k?xl,k)?mjmi1?i?j?s?(yj?yi)
17.解:因为y?J0(x),若x??(y)是贝塞尔函数的反函数,为求y?J0(x)的零点,只需求???(0),下面用插值方法计算?(0),先作差商表:
第二章 插值(第8页/共9页)
yx??(y)?0.096804937002.6?2.065212044?0.04838377640.00250768320.0555397844于是根:
2.5?1.9649662392.4?1.8856503462.31.009396260.7632137735?1.615956602
?*?p3(0)?2.6?2.065212044?(0?0.096804937)?1.00939626(0?0.096804937)(0?0.0483837764)?1.615956602(0?0.096804937)(0?0.0483837764)(0?0.0025076832)?2.404824021或
?*?p2(0)?2.5?1.964966239(0?0.0483837764)?0.7632137735(0?0.0483837764)(0?0.0025076832)
?2.40483491118.证明 当n=1时,?1?{t1|0?t1?1},所以
?1?f?(t0x0?t1x1)dt1??f?(x0?t1(x1?x0))dt1?011?f(x1)?f(x0)??f(x0,x1)
x1?x0当n=2时,?2??(t1,t2)|0?t1,t2,t1?t2?1?,所以
f??(t???20x0?t1x1?t2x2)dt1dt2??dt1?011?t10f??(x0?t1(x1?x0)?t2(x2?x0))dt2??dt10111?tf?(x0?t1(x1?x0)?t2(x2?x0))01x2?x01?x2?x0???f?((1?t)x011
2?t1x1)?f?((1?t1)x0?t1x1)?dt11?f(x2,x1)?f(x0,x1)??f(x0,x1,x2)x2?x0假设当n=m-1时命题成立,则当n=m时:
第二章 插值(第9页/共9页)
f?????m(m)(t0x0?t1x1???tmxm)dt1dt2?dtm?????dt1?dtm?1?m?1??1?(t1?t2??tm?1)0f(m)(x0?t1(x1?x0)???tm(xm?x0))dtm?
?1xm?x0(m?1)?[f((1?(t1?t2??tm?1))xm?t1x1???tm?1xm?1)????m?1?f(m?1)(x0?t1(x1?x0)???tm?1(xm?1?x0))]dt1dt2?dtm?1?1?f(xm,x1,?xm?1)?f(x0,x1,?,xm?1)??f(x0,x1,?,xm)xm?x0补充思考题:
一、填空题
1.若f(x)= x - x +1,则 (1)f(0,0,0,1)= ; (2)f(0,0,0,0,1)= ; (3)f(1,2,3,4,5,6)= 。
3
2.设x i为等矩节点,f(x1)=1, f(x2)=4, f(x3)=9, f(x 4)=16,则? f(x1)= 。 3.设x1, x2,…, xn+1是n+1个不同的节点,则差商与导数的关系是f(x1, x2,…, xn+1)= 。
4.设x1, x2,…, xn+1是n+1个不同的节点,则f(x)= f(x1)+ f(x1, x2)(x- x1)+…+ f(x1, x2,…,
4
2
xn+1)?(x?xi) + 。
i?1n5.设f(x)为首项系数为1的n次多项式,x1, x2,…, xn+1是n+1个不同的节点,则f(x1, x2,…, xn+1)= 。
2
6.已知f(x)= x -1,若q1 (x), q2 (x), q3 (x)是以x1, x2, x3为插值节点的拉格朗日基本插值多项式,即qi(x)??(x?xj?1j?ii3(x?xj)j),i?1,2,3,要使f(x)= c1q1 (x)+ c2 q2 (x) + c3 q3 (x)成立,则
c1= ,c2= ,c3= 。
7.设f(x)足够光滑,则用过(x1, f(x1)),(x2, f(x2))的直线l(x)逼近f(x),其截断误差为: R(x)= f(x)-l(x) 。
8.设f(x)足够光滑,H(x)是满足条件H(x1)= f(x1), H′(x)= f′(x1),H(x2)= f(x2),H′(x2)= f′(x2)的三次埃米特(Hermite)插值多项式,则其插值余项为:
R(x)= f(x)-H(x) 。
二、判断题
1.f(x)在节点x1, x2,…, xk+1上的k阶差商与节点x1, x2,…, xk+1的次序无关。
2.设f(x)为次数不高于n的多项式,x1, x2,…, xn+1是n+1个互不相同的节点,若经过数据点(x1, f(x1)),( x2, f(x2)),…, (x n+1, f(xn+1))构造拉格朗日插值多项式p(x),则p(x)与f(x)相等。 3.经过数据点(x1, f(x1)),( x2, f(x2)),…, (x n+1, f(xn+1))所作的n次拉格朗日插值多项式与牛顿插值多项式恒相等,且余项(即插值的截断误差)也相等。
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育2函数的插值 (2)全文阅读和word下载服务。
相关推荐: