第二章 插值(第1页/共9页)
第二章 函数的插值
1.下列函数表(表18)中的数字都是有效数字。
(1)通过ctgx的函数表,进行插值,求ctg(0.0015),并估计误差; 解:先作差分表:
xctgx0.0011000.000?500.0010.0020.0030.0040.005499.999?166.667333.332?83.333249.999?50.001199.99833.33283.334?50.002333.334?250199.998
取 x1?0.001,h?0.001,x?0.0015?x1?ph,p?0.5,则由表初公式有:
p(0.0015)?1000?500.001?0.5?333.334?p(p?1)(p?2)(p?3)4!?684.89533281?199.998?又由:(ctgx)(5)p((p?1)p(p?1)(p?2)?250?2!3!
??120sin?6x?120sin?4x?16sin2x,所以误差为:
f(5)(?)ctg(0.0015)?p4(0.0015)?p(p?1)(p?2)(p?3)(p?4)h5?3281.25
5!(2)通过sinx和cosx的函数表进行插值,求ctg(0.0015),并估计误差。 解:先作sinx和cosx差分表:
同样由表初公式和截断误差分析知:
sin(0.0015)=0.0015+e1; cos(0.0015)=0.999998719+e2 其中:e1?11?3.28125?h5?0.3?10?11,e2??3.28125?h5?0.3?10?11,于是: 5!5!第二章 插值(第2页/共9页)
ctg(0.0015)=?e2cos(0.0015)0.999998719?e20.999998719???sin(0.0015)0.0015?e10.0015?e10.0015?e1
e20.9999987190.999998719e1??0.00150.00150.00150.0015?e1e20.999998719e1??666.666?E0.00150.00150.0015?e1?666.6658125?其中:E?0.2?10?3?10?5?0.5?10?3(3)比较(1)、(2)的结果。
由于ctg(0.0015)= 666.6661667,显然用(2)式计算的结果精度高,并具有6位有效数字。
2.给定f(x)的函数值如表19所示,用3种途径求3次插值多项式。
解:(1)用牛顿方法。先作差商表:
01.451.126666666?0.09762641870.7947368421 ?0.01210156351.53.143.44.65?0.15882352946.84.11所以:
?0.1799170512N3(x)?1.45?1.126666666(x?0)?0.0976264187x(x?1.5)?0.0121015635x(x?1.5)(x?3.4)
(2)用Lagrange 方法
(x?1.5)(x?3.4)(x?6.8)x(x?3.4)(x?6.8)?1.45??3.14(?1.5)(?3.4)(?6.8)1.5(1.5?3.4)(1.5?6.8)
x(x?1.5)(x?6.8)x(x?1.5)(x?3.4)??4.65??4.113.4(3.4?1.5)(3.4?6.8)6.8(6.8?1.5)(6.8?3.4)p3(x)?化简得:p3(x)??0.0121015635x3?0.0383287583x2?1.211388323x?1.45 (3)用内维尔方法
x?1.5x?0?1.45??3.14?1.126666666x?1.45
0?1.51.5?0x?3.4x?1.5p2,3(x)??3.14??4.65?0.7947368421x?1.947894736
1.5?3.43.4?1.5x?6.8x?3.4p3,4(x)??4.65??4.11??0.1588235294x?5.19
3.4?6.86.8?3.4p1,2(x)?第二章 插值(第3页/共9页)
x?3.4x?0?p1,2(x)??p2,3(x)0?3.43.4?0x?6.8x?1.5再由:p2,3,4(x)??p2,3(x)??p3,4(x)
1.5?6.86.8?1.5x?6.8x?0p1,2,3,4(x)??p1,2,3(x)??p2,3,4(x)0?6.86.8?0p1,2,3(x)?得:p3(x)??0.0121015635x3?0.0383287583x2?1.211388323x?1.45 3.给定f(x)的函数值如表20所示,求f(27)??
解:先作差商表:
1417
68.7?1.56764.?1.42944.?1.22539.18.118?10?3 0.0001533135即:
0.01133f(x)?p3(x)?68.7?1.567?(x?14)?8.118?10?3(x?14)(x?17)?0.000153(x?14)(x?17)(x?31)
故:f(27)?p3(27)?49.3047222 用Neville方法得:
x
4.求33,利用f(x)?3,取节点x?0,x?1,x??1作插值,并估计截断误差。 解:先作差商表:
011234/32/3
?11/3第二章 插值(第4页/共9页)
所以,f(x)?p2(x)?1?2x?2141x(x?1)。故:33?p2()??1.518518518 3327f(3)(?)x(x?1)(x?1),?1???1 其截断误差:R2(x)?f(x)?p2(x)?3!3?(ln3)31?1?x3由于f???(x)?3(ln3),所以R2(x)??????1?0.1964??0.2
3!3?3?2
5.证明:在两个节点:x1,x2?x1?h上作线性插值,当x?(x1,x2)时,余项为
h2R?maxf??(x)
x81?x?x2证:因为
R?f(x)?p1(x)??hmaxf??(x),x81?x?x22f??(?)1(x?x1)(x?x2)?maxf??(x)max(x?x1)(x?x2)x1?x?x22!2x1?x?x2
x1?x2x1?x2h2其中:max(x?x1)(x?x2)?( ?x1)(?x2)?x1?x?x22246.若h是小量,则f(x?h),f(x),f(x?h)三个函数值应怎样线性组合,才能得到较好的
f??(x)的近似值。
f??(x)2f???(x)3f(4)(?1)4h?h?h,x?h??1?x, 解:由于f(x?h)?f(x)?f?(x)h?2!3!4!f??(x)2f???(x)3f(4)(?2)4f(x?h)?f(x)?f?(x)h?h?h?h,x??2?x?h,
2!3!4!f(4)(?2)?f(4)(?1)4h , 所以:f(x?h)?f(x?h)?2f(x)?f??(x)h?4!2f(4)(?2)?f(4)(?1)2f(x?h)?f(x?h)?2f(x)?f??(x)?h。 即:24!h第二章 插值(第5页/共9页)
7.证明
df(x1,x2,?,xn,x)?f(x1,x2,?,xn,x,x)。 dxi??证:设 limyi?x,则
f(x1,x2,?,xn,yi)?f(x1,x2,?,xn,x)df(x1,x2,?,xn,x)?limi??dxyi?x ?limf(x1,x2,?,xn,yi,x)?f(x1,x2,?,xn,x,x)i??8.f(x)=lnx, 节点为x=0.4,0.5,0.7和0.8,求3次插值多项式P3(x),并估计余项。
解 作差商表
故 P3(x)=-0.91629+2.231436(x-0.4)-1.83025(x-0.4)(x-0.5)+1.683559(x-0.4)(x-0.5)(x-0.7)
因f(4)(x)??6x?4, 故余项为:
R(x)?lnx?P3(x)?f(0.4,0.5,0.7,0.8,x)(x?0.4)(x?0.5)(x?0.7)(x?0.8)??1(x?0.4)(x?0.5)(x?0.7)(x?0.8),4??4?在0.4,0.5,0.7,0.8和x之间
11.用拉格朗日途径导出如下f(x)的2n?1次埃尔米特插值H2n?1(x),满足:
?H2n?1(xi)?f(xi),H2n?1(xi)?f?(xi),i?1,2,?n。
并估计余项。
解:先构造次数不高于2n?1的多项式Hi,2n?1(x)满足下列2n个条件:
Hi,2n?1(xj)?0,j?1,2,?,n???H?(x)????1,i?j,j?1,2,?,n
?ij?i,2n?1j?0,i?j?满足上述条件的2n?1的多项式Hi,2n?1(x)可以写成:
Hi,2n?1(x)?A(x?xi)(x?x1)2?(x?xi?1)2(x?xi?1)2?(x?xn)2
其中A为待定系数,再由条件Hi?,2n?1(xi)?1得:
A?1 22222(xi?x1)(xi?x2)?(xi?xi?1)(xi?xi?1)?(xi?xn)(x?xi)(x?x1)2?(x?xi?1)2(x?xi?1)2?(x?xn)2即:Hi,2n?1(x)? 22222(xi?x1)(xi?x2)?(xi?xi?1)(xi?xi?1)?(xi?xn)
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育2函数的插值 全文阅读和word下载服务。
相关推荐: