第一范文网 - 专业文章范例文档资料分享平台

球与各种几何体切、接问题专题(一) (2)

来源:用户分享 时间:2020-06-24 本文由仙女山的月亮 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

例7设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.

思路分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.

(4)为什么正四面体外接球和内切球心是同一个点?

2.其它棱锥与球的切接问题

(1)球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R.这

样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.

(2)球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.

结论1:正棱锥的外接球的球心在其高上,具体位置可通过计算找到.

结论2:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心. 长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法.

途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体.

途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.

途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体. 途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.

例8 正三棱锥的高为1,底面边长为26,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.

思路分析:此题求解的关键是搞清球的半径与正三棱锥的高及底面边长的关系,由等体积法可得:VP?ABC?VO?PAB?VO?PAC?VO?PBC?VO?ABC,得到R?23?6?2.

23?3

例9(福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 .

思路分析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法.三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,由侧棱长均相等,所以可构造正方体模型.

点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中计算问题,这是解决几何体与球切接问题常用的方法.

例10【2012年新课标高考卷】已知三棱锥S?ABC的所有顶点都在球O的球面上,?ABC是边长为1的正三角形,SC是球O的直径,且SC?2;则此棱锥的体积为( ) A.

2322 B. C. D. 6632思路分析:?ABC的外接圆是球面的一个小圆,由已知可得其半径,从而得到点O到面ABC的距离.由SC为球O的直径?点S到面ABC的距离即可求得棱锥的体积.

练习:

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育球与各种几何体切、接问题专题(一) (2)全文阅读和word下载服务。

球与各种几何体切、接问题专题(一) (2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1101831.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top