paperwehavesimulatedlong-termmicrostructuralchangesandtimedependantevolutionofmajorprecipitatesinsomeimportantferritic-martensiticsteelgrades.
Materialsandsimulationmethod
Fourdifferentferritic-martensiticheat-resistantsteelsarechosenforthepresentstudy.ChemicalcompositionsofthesesteelsaregiveninTable1.Theycontainabout9wt.%Cr,whichislowerthantheCrcontentofconventionalausteniticheat-resistantsteels.Theyareair-hardenablewhichcausesausten-itetotransformcompletelyintomartensite.Moimpartsim-provedthecreeprupturestrength,Nbforms neMXprecipitateswhichisstableevenatelevatedtemperature.PresenceofWinP92gradefurtherenhancescreeprupturestrengthandsteam-oxidationresistanceattemperaturesexceeding600 C.
RAFMsteelsareessentiallysimilartomediumorhighchromiumlowcarbonsteelssuchasV,Nbmodi ed9Cr-1Mosteel,butwithamajordifferencewithrespecttoelementspro-ducinglonghalf-lifetransmutantslikeNi,Mo,Nb,Cu,Co,Al,N,etc.Theseelementsarelargelysubstitutedbytheircompara-tivelyloweractivationcounterparts,suchasMn,W,V,Ta,andC.MoisreplacedbyWandNbbyTa.Strictcontrolisexercisedontheradioactivetrampelements(Mo,Nb,B,Cu,Ni,Al,Co,Ti)andontheelementsthatpromoteembrittlement(S,P,As,Sb,Sn,Zr,O).Theseelementsareusuallyrestrictedtoppmlevels.
Simulationoflong-termprecipitateevolutioninausteniticstainlesssteelshasalreadybeenattemptedbyShimetal.[4],usingMatCalcsoftwaredevelopedbyKozeschniketal.[5,6].Simulationofprecipitateevolutionincertainferritic-martensitic9-12%Crsteelsarealsoreportedintheliterature[7,8].Thepurposeofthisstudyistosimulatethelong-termprecipitateevolutioninsomeimportantgradesofferritic-martensiticheat-resistantsteelsforapplicationsaround600 CbyMatCalcsoft-ware,usinganindependentlydevelopedGibbsenergydatabaseforsteelsandamodi edversionofthemobilitydatabasethatisincludedwithMatCalc.
MatCalcusesclassicalnucleationtheoryalongwithOn-sager’sextremumprincipleforsimulatingprecipitateevolution.Ithasanumericalmodeltoclassifyprecipitatesofsameradiusandcompositionnucleatedindifferentintervalsoftime.IntheprecipitationkineticsapproachimplementedinMatCalc,thethemicrostructuralevolutionofthesystemissimulatedwithintheframeworkoftheKampmann-Wagnermodel[9].Accordingly,thetotaltimehistoryisbrokenintoadequatelysmall,isothermalsegments[6].Precipitatesofequalsizeandchemicalcompo-sitionaregroupedintoclasses,foreachofwhichtheevolutioninsizeandcompositioniscalculatedaccordingtotherateequa-tionsderivedfromthethermodynamicextremumprinciple[5].Nucleationofnewprecipitatesistakenintoaccountineachtimestepbasedonamulticomponentextensionofclassicalnucleationtheory[10,11].Accordingtothis,thetransientnucleationrateJ
de nesthenumberofnewnucleicreatedinthetimestep tasJ t.Jisgivenby
J=N0Zβ
exp( G t
kT)exp( τ
)
(1)
whereN0representsthetotalnumberofavailablenucleationsites,kistheBoltzmannconstant,Tisthetemperature,ZistheZeldovichfactor,β istheatomicattachmentrate,τistheincubationtimeandG isthecriticalnucleationenergygivenby
=
16πγ3
G3 G(2)
vol
whereγisthespeci cinterfacialenergyand Gvolisthevol-umeGibbsenergychangeonnucleiformation.γand Gvoland
theircompositionandtemperaturedependenciesareevaluatedusingtheGibbsenergydatabase.Bothquantitiesaremostes-sentialforachievingreliablecalculationofnucleationratesforprecipitationkineticssimulations.ThisissuehasrecentlybeendiscussedbyRadisetal.[10]inatreatmentofmultimodalsizedistributionsinNi-basesuperalloys.AllrequiredquantitiescanbecalculatedfromappropriateanalyticalexpressionsusingtheGibbsenergyandmobilitydatabases.DetailedexpressionsforallnucleationrelatedquantitiesaresummarizedbyJanssensetal.[11].ThenumberofpotentialnucleationsitesN0occurringinequation(1)isdependentonthechoiceiswhethernucleationishomogeneousorheterogeneous.Inthepresentsimulations,possiblechoiceshavebeenhomogeneousnucleationinthebulk,orheterogeneousnucleationondislocations,grainboundaries(GB),subgrainboundaries(SGB),grainboundaryedgesorgrainboundarycorners.Actualnumberofnucleationsitesisgivenbythetotalnumberofatomsinthesysteminthecaseofhomoge-neousnucleation,orbythenumberofatomslocatedatthehet-erogeneousnucleationsitesinallothercases.Fordislocations,thenumberofsitesisgivenbythenumberofatomslocatedatthedislocationlinesinaunitvolume.Thenumberofatomsinthegrainboundarycanbeestimatedfromthetotalgrainorsub-grainareas,whicharegivenbythegrain/subgraindiameterandtheelongationratio.Detailedexpressionsforcalculationofnu-cleationsitesinmicrostructuresarefoundelsewhere[7].Finally,thetotalnumberofpotentialnucleationsitesfromeitherhomo-geneousnucleation,ornucleationatdislocations,grainbound-aries,subgrainboundaries,edgesorcornersenterequation(1).
Inthekineticsimulationthematrixphaseisde ves,Z-phase,M23C6andMXareconsideredtobelikelyprecipitates.Thetransformationoftheaustenitematrixintomartensiteisnotconsidered.InsteadtheprecipitatesareallowedtonucleateintheferritematrixbelowAe1temperatureandal-lowedtogrowtillMstemperatureisreached,belowwhichthe
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证THERMODYNAMIC AND KINETIC MODELING OF PRECIPITATION PHENOMENA IN P9 STEELS(2)全文阅读和word下载服务。
相关推荐: