从整个算式来看,7×8是4的倍数,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20。 解:5+(7×8+12)÷4-2=20。
例2 把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):
分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形。如果从乘法算式入手,那么只有下面两种可能:
2×3=6或2×4=8,
所以应当从乘法算式入手。
因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数。于是可知,原题加减法算式中的六个数的和应该是偶数。
若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意; 若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组:
4+5=9,8-7=1(或8-1=7); 1+7=8,9-5=4(或9-4=5)。 所以答案为 与
例3 下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:
□□□÷□□=□-□=□-7。
分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能。经逐一验证,8-6,6-4和4-2均无解,只有当中间减式为5-3时有如下两组解: 128÷64=5-3=9-7,
或 164÷82=5-3=9-7。
例4 将1~9九个数字分别填入下面四个算式的九个□中,使得四个等式都成立: □+□=6, □×□=8, □-□=6, □□÷□=8。
分析与解:因为每个□中要填不同的数字,对于加式只有两种填法:1+5或2+4;对于乘式也只有两种填法:1×8或2×4。加式与乘式的数字不能相同,搭配后只有两种可能: (1)加式为1+5,乘式为2×4; (2)加式为2+4,乘式为1×8。
对于(1),还剩3,6,7,8,9五个数字未填,减式只能是9-3,此时除式无法满足;
对于(2),还剩3,5,6,7,9五个数字未填,减式只能是9-3,此时除式可填56÷7。答案如下:
2+4=6, 1×8=8, 9-3=6, 56÷7=8。
例2~例4都是对题目经过初步分析后,将满足题目条件的所有可能情况全部列举出来,再逐一试算,决定取舍。这种方法叫做枚举法,也叫穷举法或列举法,它适用于只有几种可能情况的题目,如果可能的情况很多,那么就不宜用枚举法。
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科小学数学奥数基础教程(四年级)30讲(20)全文阅读和word下载服务。
相关推荐: