Gene expression data provide information on the location where certain genes are active; in order for this to be useful, such a location must be registered to an anatomical atlas. Because gene expression maps are considerably different from each other – t
CorrespondenceTransferfortheRegistrationofMultimodalImages
ZhaoYiStefanoSoatto
ComputerScienceDepartment,UniversityofCalifornia
LosAngeles,CA90095
{zyi,soatto}@cs.ucla.edu
Abstract
Geneexpressiondataprovideinformationonthelo-cationwherecertaingenesareactive;inorderforthistobeuseful,suchalocationmustberegisteredtoananatomicalatlas.Becausegeneexpressionmapsareconsiderablydifferentfromeachother–theydisplaytheexpressionofdifferentgenes–andfromtheanatomicalatlas,thisproblemiscurrentlyaddressedeitherman-uallybytrainedexperts,orbyneglectingallimagein-formationandonlyusingthepre-segmentedboundaries.Inthismanuscriptweconcentrateondatadiscrepancymeasuresthattakeintoaccountimageinformationwhenthisispresentinboththetargetandtemplateimages.Weexploitsuch“bi-lateral”structurestodrivethecor-respondenceprocessinregionswheretheintensityin-formationisinconsistent,analogouslytoa“motionin-painting”task.Althoughnogroundtruthcanbeestab-lished,andpriorinformationclearlyplaysakeyrole,weshowthatourmodelachievesdesirableresultsonsubjectivetestsvalidatedbyexpertsubjects.
1.Introduction
Establishingcorrespondencebetweendifferentim-agesiskeyforustoinferpropertiesoftheunderlyingscene.Thebasicassumptionisthatthereissomethingcommonbetweentheimages,modulodomaindeforma-tions(e.g.inducedbyviewpointchangesorbyscenede-formations)andrangedeformations(e.g.contrasttrans-formationsinducedbychangesinillumination,orbychangesofimagingmodality).Suchcommonalitymaybeabstract,ratherthanphysical,forinstancewhentheimagesportrayobjectsinthesamecategory,say“hip-pocampus,”eventhougheachimageportraysadifferentphysicalobject.Acrucialcomponentofanyapproachtoregistrationisthemechanismusedtocomparetwo(de-formed)images:Whilerange(intensity)similarityisa
naturalchoice,forinstancemeasuredinthesenseofL2[30]orTotalVariation[26],extremecontrastchangeshavebeensuccessfullytackledusingMutualInforma-tion[22].
Themostrecentdevelopmentsinmedicalimag-ing,however,arechallengingthesepremisesaltogether:Geneexpressiondataaregeneratedwithdifferentstains,highlightingdifferentgenes,withtheexpressgoalofmakingeachresultingimageasdifferentaspossiblefromtheothers,inordertomaximizetheirinformationcontent.Nevertheless,thepractitionerrequiresregister-ingsuchimagestoanatomicalatlases,inordertoascribetheactivityofagenetoaparticularanatomicalstruc-ture(Fig.1).Thesamegoesforregisteringfunctionalimaging(e.g.F-MRI)toanatomicalatlases,ataskthatisbyandlargeperformedmanuallybytrainedphysicians.Whilethisisdoableforahandfulofsubjects,system-aticstatisticalstudiesofgeneexpressiondatainlargepopulationscallforsomedegreeofautomation.Butwhatdoesitmeantoestablishcorrespondence,whenthereisnocommonunderlyingstructure,andwhenthedataaredesignedtobeasdifferent(“indepen-dent”)fromeachotheraspossible?Clearlyexpertpriorknowledgeofanatomyandbiologicalfunctionalityisin-dispensable,andseveralresearchgroupsareactivelyen-gagedinmodeling,learningandenforcingshapepriorsinsegmentationandregistration[16,25].Nevertheless,anyregistrationalgorithmmustalsotakeintoaccounttheavailabledata,andthisproblemhasbeenlargelyoverlookedintheliterature,wheremostlystandarddatatermsareused[15,24],orwhereonlytheboundaryin-formationistakenintoconsiderationandtherestofthedeformation eldisdeterminedbygenericregulariza-tion[8,20,27].Therefore,inthismanuscriptwefocusourattentionondevisingsuitabledatatermsforregister-ingmulti-modalimages.Ourgoalistodesignaschemetotakevisiblegeometricstructures(onecouldcallthem“landmarkregions”)intoaccountwhentheyarepresent
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新外语学习Correspondence Transfer for the Registration of Multimodal Images全文阅读和word下载服务。
相关推荐: