例1:某班共有13个同学,那么至少有几人是同月出生?( ) A. 13 B. 12 C. 6 D. 2
例2:某班参加一次数学竞赛,试卷满分是30分。为保证有2人的得分一样,该班至少得有几人参赛?( )
A. 30 B. 31 C. 32 D. 33
例3. 在某校数学乐园中,五年级学生共有400人,年龄最大的与年龄最小的相差不到1岁,我们不用去查看学生的出生日期,就可断定在这400个学生中至少有两个是同年同月同日出生的,你知道为什么吗?
例4:有红色、白色、黑色的筷子各10根混放在一起。如果让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证至少有两根筷子是同色的?为什么?(2)至少拿几根,才能保证有两双同色的筷子,为什么?
例5. 证明在任意的37人中,至少有4人的属相相同。
例6:某班有个小书架,40个同学可以任意借阅,试问小书架上至少要有多少本书,才能保证至少有1个同学能借到2本或2本以上的书?
下面我们来看两道国考真题:
例7:(国家公务员考试2004年B类第48题的珠子问题):
有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两颗颜色 相同,应至少摸出几粒?( ) A.3 B.4 C.5 D.6
例8:(国家公务员考试2007年第49题的扑克牌问题):
从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 八.“牛吃草”问题
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。 这类问题的基本数量关系是:
1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。 下面来看几道典型试题:
例1.由于天气逐渐变冷,牧场上的草每天一均匀的速度减少。经计算,牧场上的草可供20头牛吃5天,或供16头牛吃6天。那么可供11头牛吃几天?( ) A.12 B.10 C.8 D.6
例2.有一片牧场,24头牛6天可以将草吃完;21头牛8天可以吃完,要使牧草永远吃不完,至多可以放牧几头牛?( ) A.8 B.10 C.12 D.14
例3.有一个水池,池底有一个打开的出水口。用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完。如果仅靠出水口出水,那么多长时间将水漏完?( ) A.25 B.30 C.40 D.45 练习:
1.一片牧草,可供16头牛吃20天,也可以供80只羊吃12天,如果每头牛每天吃草量等于每天4只羊的吃草量,那么10头牛与60只羊一起吃这一片草,几天可以吃完?( ) A.10 B.8 C.6 D.4
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新经管营销2013年行测数字推理题作业(3)全文阅读和word下载服务。
相关推荐: