带电粒子在匀强磁场中的运动课时训练
【测控导航】
巩固基础
1.如图所示,在垂直纸面向里的足够大的匀强磁场中,有a 、b 两个电子从同一处沿垂直磁感线方向开始运动,a 的初速度为v,b 的初速度为2v.则( C )
A.a 先回到出发点
B.b 先回到出发点
C.a 、b 同时回到出发点
D.不能确定
解析:电子再次回到出发点,所用时间为运动的一个周期.电子在磁场中运动的周期T=,与电
子运动速度无关.
2.两个带电粒子以同一速度、同一位置进入匀强磁场,在磁场中它们的运动轨迹如图所示.粒子a 的运动轨迹半径为r 1,粒子b 的运动轨迹半径为r 2,且r 2=2r 1,q 1、q 2分别是粒子a 、b 所带的电荷量,则( C
)
A.a 带负电、b 带正电、∶=2∶1
B.a 带负电、b 带正电、∶=1∶2
C.a 带正电、b 带负电、∶=2∶1
D.a 带正电、b 带负电、∶=1∶1
解析:根据磁场方向及两粒子在磁场中的偏转方向可判断出a 、b 分别带正、负电,根据半径之比可计算出∶为2∶1.
3.如图所示是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E.平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ABC
)
A.质谱仪是分析同位素的重要工具
B.速度选择器中的磁场方向垂直纸面向外
C.能通过狭缝P 的带电粒子的速率等于E/B
D.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小
解析:质谱仪是测量带电粒子的质量和分析同位素的重要工具,选项A 对;速度选择器中电场力与洛伦兹力是一对平衡力,即qvB=qE,故
v=,选项C 正确;据左手定则可以确定,速度选择器中的磁场方向垂直纸面向外,选项B 对;粒子在匀强磁场中运动的半径r=,即粒子的比荷=,由此看出粒子打在胶片上的位置越靠近狭缝P,粒子运动的半径越小,粒子的比荷越大,选项D 错.
4.用如图所示的回旋加速器来加速质子,为了使质子获得的最大动能增加为原来的4倍,可采用下列哪几种方法( AC
)
A.将其磁感应强度增大为原来的2倍
B.将其磁感应强度增大为原来的4倍
C.将D 形金属盒的半径增大为原来的2倍
D.将两D 形金属盒间的加速电压增大为原来的4倍
解析:设粒子在回旋加速器的磁场中绕行的最大半径为R,由牛顿第二定律得:evB=m ①
质子的最大动能:E km =mv 2②
解①②式得:E km =.
要使质子的动能增加为原来的4倍,可以将磁感应强度增大为原来的2倍或将两D 形金属盒的半径增大为原来的2倍,故选项B 错,A 、C 正确.质子获得的最大动能与加速电压无关,故选项D 错.
5.有电子e)、质子H)、氘核H)、氚核H),以同样的速度垂直射入同一匀强磁场中,它们都做匀速圆周运动,则( D )
A.电子做匀速圆周运动的半径最大
B.质子做匀速圆周运动的半径最大
C.氘核做匀速圆周运动的周期最大
D.氚核做匀速圆周运动的周期最大
解析:由带电粒子在匀强磁场中做匀速圆周运动的半径公式r=和周期公式
T=可知,不同
粒子在以相同速度进入同一磁场中做圆周运动时,半径的大小和周期的大小都只与比荷有关,比值越小,r越大,T越大,四种粒子中H 的最小,故氚核的半径和周期都是最大的.故选D.
6.一带电粒子在匀强磁场中做匀速圆周运动,若速度突然反向而大小不变,则粒子的运动情况是( D )
A.速度先减小到零,后又反向增大到原值
B.速度减小到零后呈静止状态
C.仍做圆周运动,其轨迹不变
D.仍做圆周运动,其轨迹与原轨迹相切
解析:若速度反向而大小不变,则带电粒子所受的洛伦兹力大小不变,方向相反,所以带电粒子的径迹会改变,由于洛伦兹力对带电粒子不做功,粒子的速度大小不会变,速度方向改变,所以粒子仍做匀速圆周运动,其轨迹与原轨迹相切,故选D.
7.如图所示,在x 轴上方存在垂直纸面向里的磁感应强度为B 的匀强磁场,x 轴下方存在垂直纸面向外的磁感应强度为的匀强磁场.一带负电的粒子从原点O 以与x 轴成30°角斜向上射入磁场,且在上方运动半径为R.则( BD
)
A.粒子经偏转一定能回到原点O
B.粒子在x 轴上方和下方两磁场中运动的半径之比为1∶2
C.粒子完成一次周期性运动的时间为
D.粒子第二次射入x 轴上方磁场时,沿x 轴前进3R
解析:由r=可知,粒子在x 轴上方和下方两磁场中运动的半径之比为1∶2,选项B 正确;粒子完成一次周期性运动的时间
t=T 1+T 2
=+=,选项C 错误;粒子第二次射入x 轴上方磁场时沿x 轴前进l=R+2R=3R,则粒子经偏转不能回到原点O,选项A 错误,D 正确.
提升能力
8.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点沿半径方向以速度v 0垂直磁场方向射入磁场中,并从B 点射出.∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为( D
)
A. B.
C. D.
解析:从图中可知,轨迹上优弧
所对圆心角θ=,故t=T=.但题中已知条件不
够,
没有此选项,另想办法找规律表示t.
由做匀速圆周运动的时间t=/v0,
从图示分析有R=r/tan 30°=r,
则=R·θ=r
×=πr,
则t=/v0
=.故选项D正确.
9.一磁场宽度为L,磁感应强度为B,如图所示,一粒子质量为m、带电荷量为-q(q>0),不计重
力,以一速度(方向如图)射入磁场.若不使其从右边界飞出,则粒子的速度v应为多大
?
解析:粒子不从右边界飞出的临界状态为其运动轨迹恰好与右边界相切,如图
,
由几何知识得r+rcos θ=L①
又r=②
由①②得
:v=.
故若要粒子不从右边界飞出,应有v
≤.
答案:v
≤
解答临界、极值问题的关键是画出粒子的轨迹,定出圆心,并根据粒子进入磁场时的初始条件和射出条件找到极值(边界)条件.确定半径时要用到几何知识.
10.一个质量为m,电荷量为-q,不计重力的带电粒子从x轴上的P(a,0)点以速度v,沿与x轴正
方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限.求
:
(1)匀强磁场的磁感应强度B;
(2)穿过第一象限的时间.
解析:(1)作出带电粒子做圆周运动的圆心和轨迹,由图中几何关系知
:
Rcos 30°=a,得R=,
Bqv=m得:B==.
(2)运动时间
:t=·=.
答案
:(1)(2)
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新初中教育人教版物理选修3-1《带电粒子在匀强磁场中的运动》课时训练及答全文阅读和word下载服务。
相关推荐: