由直线l与椭圆C1恒有两个不同的交点得
?1?(82)2k2?16(1?4k2)?16(4k2?1)?0,
即 k2?1. ① 4x2将y?kx?2代入?y2?1得(1?3k2)x2?62kx?9?0.
3由直线l与双曲线C2恒有两个不同的交点A,B得
2??1?3k?0,?222???2?(?62k)?36(1?3k)?36(1?k)?0.
1即k2?且k2?1.3设A(xA,yA),B(xB,yB),则xA?xB?62k?9,x?x?AB1?3k21?3k2
由OA?OB?6得xAxB?yAyB?6,而xAxB?yAyB?xAxB?(kxA?2)(kxB?2)?(k2?1)xAxB?2k(xA?xB)?2 ?(k?1)?2?962k?2k??2 221?3k1?3k3k2?7?.3k2?13k2?715k2?13于是2?6,即?0.解此不等式得 23k?13k?1k2?131或k2?. ③ 153由①、②、③得
1113?k2?或?k2?1. 4315故k的取值范围为(?1,?6.(本小题满分12分)
数列{an}满足a1?1且an?1?(1?13311313)?(?,?)?(,)?(,1) 1532231511)a?(n?1). nn2?n2n(Ⅰ)用数学归纳法证明:an?2(n?2);
2(Ⅱ)已知不等式ln(1?x)?x对x?0成立,证明:an?e(n?1),其中无理数
e=2.71828….
(Ⅰ)证明:(1)当n=2时,a2?2?2,不等式成立. (2)假设当n?k(k?2)时不等式成立,即ak?2(k?2),
那么ak?1?(1?11)ak?k?2. 这就是说,当n?k?1时不等式成立.
k(k?1)2根据(1)、(2)可知:ak?2对所有n?2成立. (Ⅱ)证法一:
由递推公式及(Ⅰ)的结论有 an?1?(1?两边取对数并利用已知不等式得 lnan?11111)a??(1??)an.(n?1) nn2?n2nn2?n2n11?ln(1?2?n)?lnan
n?n2?lnan?1111 故 (n?1). lna?lna???.n?1nn(n?1)2nn2?n2n上式从1到n?1求和可得
lnan?lna1?111111??????2???n?1 1?22?3(n?1)n2221n111111112?1??(?)???????1??1?n?2. 1223n?1n2n21?21?即lnan?2,故an?e2(Ⅱ)证法二:
由数学归纳法易证2?n(n?1)对n?2成立,故
n(n?1).
an?1?(1?1111)a??(1?a?nnn(n?1)n(n?1)n2?n2n(n?2),则bn?1?(1?1)bnn(n?1)(n?2).
令bn?an?1(n?2).
取对数并利用已知不等式得 lnbn?1?ln(1?1)?lnbn
n(n?1)?lnbn?
1n(n?1)(n?2).
上式从2到n求和得 lnbn?1?lnb2?111 ????1?22?3n(n?1)?1?11111???????1. 223n?1n(n?2).
因b2?a2?1?3.故lnbn?1?1?ln3,bn?1?e1?ln3?3e故an?1?3e?1?e2,n?2,又显然a1?e2,a2?e2,故an?e2对一切n?1成立. 7.(本小题满分12分)
已知数列{an}的各项都是正数,且满足:a0?1,an?1?(1)证明an?an?1?2,n?N; (2)求数列{an}的通项公式an. 解:(1)方法一 用数学归纳法证明:
1°当n=1时,a0?1,a1?1an,(4?an),n?N. 213a0(4?a0)?, 22 ∴a0?a1?2,命题正确. 2°假设n=k时有ak?1?ak?2. 则n?k?1时,ak?ak?1?11ak?1(4?ak?1)?ak(4?ak) 221?2(ak?1?ak)?(ak?1?ak)(ak?1?ak)2
1?(ak?1?ak)(4?ak?1?ak).2而ak?1?ak?0.又ak?1?4?ak?1?ak?0,?ak?ak?1?0.
11ak(4?ak)?[4?(ak?2)2]?2. 22∴n?k?1时命题正确.
由1°、2°知,对一切n∈N时有an?an?1?2. 方法二:用数学归纳法证明:
1°当n=1时,a0?1,a1?13a0(4?a0)?,∴0?a0?a1?2; 22 2°假设n=k时有ak?1?ak?2成立,
1x(4?x),f(x)在[0,2]上单调递增,所以由假设 2111有:f(ak?1)?f(ak)?f(2),即ak?1(4?ak?1)?ak(4?ak)??2?(4?2),
222 令f(x)?也即当n=k+1时 ak?ak?1?2成立,所以对一切n?N,有ak?ak?1?2 (2)下面来求数列的通项:an?1?11an(4?an)?[?(an?2)2?4],所以 222(an?1?2)??(an?2)2
1211221122211?2???2n?12n令bn?an?2,则bn??bn??(?b)???()b????()bn?1n?2n?1222222,
又bn=-1,所以bn??()2
12n?11n,即an?2?bn?2?()2?1
2
备战2010高考数学――压轴题跟踪演练系列六
1.(本小题满分14分)
如图,设抛物线C:y?x的焦点为F,动点P在直线l:x?y?2?0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程. (2)证明∠PFA=∠PFB.
2解:(1)设切点A、B坐标分别为(x,x0)和(x1,x12)((x1?x0),
2∴切线AP的方程为:2x0x?y?x0?0;
2 切线BP的方程为:2x1x?y?x1?0; 解得P点的坐标为:xP?2x0?x1,yP?x0x1 2x0?x1?xP?xP,
32所以△APB的重心G的坐标为 xG?2y0?y1?yPx0?x12?x0x1(x0?x1)2?x0x14xP?ypyG????,
3333所以yp??3yG?4xG,由点P在直线l上运动,从而得到重心G的轨迹方程为:
21x?(?3y?4x2)?2?0,即y?(4x2?x?2).
3 (2)方法1:因为FA?(x0,x0?),FP?(由于P点在抛物线外,则|FP|?0.
214x0?x1112,x0x1?),FB?(x1,x1?). 244x0?x11112?x0?(x0x1?)(x0?)x0x1?FP?FA44?4, ∴cos?AFP??21|FP||FA||FP|22|FP|x0?(x0?)24x0?x11112?x1?(x0x1?)(x1?)x0x1?FP?FB244?4, ?同理有cos?BFP?1|FP||FB||FP|22|FP|x1?(x1?)24∴∠AFP=∠PFB.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新幼儿教育2010年高考数学压轴题跟踪演练(7+9+8+6+7+7) (5)全文阅读和word下载服务。
相关推荐: