得Sm?am?1?am?2?am?3???a1?am, ………………② 由①+②, 得2Sm?(m?1)?∴Sm?1m?11m1?2am??2???, 226261(3m?1).………………(8分) 1212(3) ∵b1?,bn?1?bn?bn?bn(bn?1), ………………③
3∴对任意的n?N?, bn?0. ………………④ 由③、④, 得
1bn?1?111111. ??,即??bn(bn?1)bnbn?1bn?1bnbn?1∴Tn?(分)
111111111?)?(?)???(?)???3?.……………(10b1b2b2b3bnbn?1b1bn?1bn?1∵bn?1?bn?bn?0, ?bn?1?bn,∴数列{bn}是单调递增数列. ∴Tn关于n递增. 当n?2, 且n?N?时, Tn?T2. ∵b1?211144452,b2?(?1)?, b3?(?1)?, 33399981175?.………………(12分) b152∴Tn?T2?3?∴Sm?分)
751752384,即(3m?1)?,∴m??6, ∴m的最大值为6. ……………(1452125239395.(12分)E、F是椭圆x?2y?4的左、右焦点,l是椭圆的右准线,点P?l,过点
22E的直线交椭圆于A、B两点.
(1) 当AE?AF时,求?AEF的面积; (2) 当AB?3时,求AF?BF的大小; (3) 求?EPF的最大值.
yAPM?m?n?41?S?mn?2 解:(1)?2?AEF2m?n?82?(2)因?BEOFx??AE?AF?4?AB?AF?BF?8,
BE?BF?4??
则AF?BF?5.
(1) 设P(22,t)(t?0) tan?EPF?tan(?EPM??FPM)
?(32232?222t223?)?(1?)???, ttt2t2?6t?6t?133??EPF?30? 3当t?6时,tan?EPF?22Sn16.(14分)已知数列?an?中,a1?,当n?2时,其前n项和Sn满足an?,
2Sn?13(2) 求Sn的表达式及liman的值;
n??S2n(3) 求数列?an?的通项公式; (4) 设bn?1(2n?1)3?1(2n?1)3,求证:当n?N且n?2时,an?bn.
22Sn11?Sn?1?Sn?2SnSn?1???2(n?2) 解:(1)an?Sn?Sn?1?2Sn?1SnSn?1所以??1?1是等差数列.则. S??nS2n?1?n?liman22?lim???2.
n??S2n??2S?12limSn?1nnn??(2)当n?2时,an?Sn?Sn?1?11?2, ??22n?12n?14n?1?1?n?1???3综上,an??.
?2?n?2??1?4n2?(3)令a?111,b?,当n?2时,有0?b?a? (1) 2n?12n?131?2n?11?1?2n?11.
法1:等价于求证
?2n?1?3?2n?1?3
当n?2时,0?111?,令f?x??x2?x3,0?x?, 2n?1333313x)?2x(1??)?2x(1?)?0, 2223f??x??2x?3x2?2x(1?则f?x?在(0,1]递增. 3又0?111, ??2n?12n?1311)?g(),即an?bn.
332n?12n?11111??(?)?b2?a2?(b3?a3) 2n?12n?1(2n?1)3(2n?1)3所以g(法(2)an?bn??(a?b)(a2?b2?ab?a?b) (2)
?(a?b)[(a2?因
ababba?a)?(b2??b)] ?(a?b)[a(a??1)?b(b??1)] (3) 2222,
所
以
b?ab3a33?1?a??1??1??1??1?0222223baa(a??1)?b(b??1)?0
22由(1)(3)(4)知an?bn.
法3:令g?b??a?b?ab?a?b,则g??b??2b?a?1?0?b?221?a 2所以g?b??maxg?0?,g?a??maxa?a,3a?2a
22????因0?a?2141?)?0 ,则a2?a?a?a?1??0,3a2?2a?3a(a?)?3a(339322所以g?b??a?b?ab?a?b?0 (5) 由(1)(2)(5)知an?bn 7. (本小题满分14分)
x2y2设双曲线2?2=1( a > 0, b > 0 )的右顶
ab点为A,P是双曲线上异于顶点的一个动点,从A引双曲线的两条渐近线的平行线与直线OP分别交于Q和R两点.
(1) 证明:无论P点在什么位置,总有|OP|2 = |OQ·OR| ( O为坐标原点);
????????
(2) 若以OP为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围;
b(x – a ), a??????ab?kababkab 解得:OR= (,), 同理可得OQ= (,),
ak?bak?bak?bak?b解:(1) 设OP:y = k x, 又条件可设AR: y =
a2b2(1?k2)?abab?kabkab∴|OQ·OR| =|+| =22. 4分
ak?bak?bak?bak?b|ak?b2|????? 设OP = ( m, n ) , 则由双曲线方程与OP方程联立解得:
???a2b2k2a2b22
m =2, n = 2, 2222b?akb?ak2
a2b2(1?k2)a2b2k2a2b2∴ |OP| = :m + n = 2+ 2=2 ,
b?a2k2b?a2k2b?a2k2???222
∵点P在双曲线上,∴b2 – a2k2 > 0 .
∴无论P点在什么位置,总有|OP| = |OQ·OR| . 4分 (2)由条件得:
???2
?????a2b2(1?k2)b2?a2k2= 4ab, 2分
4b2?ab即k = > 0 , ∴ 4b > a, 得e > 2ab?4a2
17 2分 4
备战2010高考数学――压轴题跟踪演练系列二
1. (本小题满分12分)
已知常数a > 0, n为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x的函数. (1) 判定函数f n ( x )的单调性,并证明你的结论. (2) 对任意n ? a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n) 解: (1) fn `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,
∵a > 0 , x > 0, ∴ fn `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分 (2)由上知:当x > a>0时, fn ( x ) = xn – ( x + a)n是关于x的减函数,
∴ 当n ? a时, 有:(n + 1 )n– ( n + 1 + a)n ? n n – ( n + a)n. 2分
又 ∴f `n + 1 (x ) = ( n + 1 ) [xn –( x+ a )n ] ,
∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n + 1 )[ nn – ( n + a)n] = ( n + 1 )[ nn – ( n + a )( n + a)n – 1 ] 2分
( n + 1 )fn`(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分 ∵( n + a ) > n ,
∴f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n) . 2分 2. (本小题满分12分)
已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v?[–1,1],都有|f (u) – f (v) | ≤ | u –v | .
(1) 判断函数p ( x ) = x2 – 1 是否满足题设条件? (2) 判断函数g(x)=??1?x,x?[?1,0],是否满足题设条件?
1?x,x?[0,1]?解: (1) 若u ,v ? [–1,1], |p(u) – p (v)| = | u2 – v2 |=| (u + v )(u – v) |,
取u =
31?[–1,1],v = ?[–1,1], 425| u – v | > | u – v |, 4则 |p (u) – p (v)| = | (u + v )(u – v) | = 所以p( x)不满足题设条件. (2)分三种情况讨论:
10. 若u ,v ? [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件; 20. 若u ,v ? [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件; 30. 若u?[–1,0],v?[0,1],则:
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新幼儿教育2010年高考数学压轴题跟踪演练(7+9+8+6+7+7) (2)全文阅读和word下载服务。
相关推荐: