即n=k+1时结论成立.
根据(i)和(ii)可知结论对一切正整数都成立. 故|bn|?13对n?1,2,?都成立的a的取值范围为[,??). n225.(本小题满分14分,第一小问满分4分,第二小问满分10分)
已知a?R,函数f(x)?x2|x?a|.
(Ⅰ)当a?2时,求使f(x)?x成立的x的集合; (Ⅱ)求函数y?f(x)在区间[1,2]上的最小值.
本小题主要考查运用导数研究函数性质的方法,考查分类讨论的数学思想和分析推理能力. 满分14分.
解:(Ⅰ)由题意,f(x)?x2x?2.
当x?2时,f(x)?x2(2?x)?x,解得x?0或x?1; 当x?2时,f(x)?x2(x?2)?x,解得x?1?2. 11?2. 综上,所求解集为0,,??(Ⅱ)设此最小值为m.
①当a?1时,在区间[1,2]上,f(x)?x3?ax2. 因为
2 f?(x)?3x2?2ax?3x(x?a)?0,x?(1,2),
3则f(x)在区间[1,2]上是增函数,所以m?f(1)?1?a.
②当1?a?2时,在区间[1,2]上,f(x)?x2(x?a)?0,由f(a)?0知 m?f(a)?0.
③当a?2时,在区间[1,2]上,f(x)?ax2?x3.
2 f?(x)?2ax?3x2?3x(a?x).
3若a?3,在区间(1,2)内f?(x)?0,从而f(x)为区间[1,2]上的增函数, 由此得 m?f(1)?a?1.
2若2?a?3,则1?a?2.
3
22 当1?x?a时,f?(x)?0,从而f(x)为区间[1,a]上的增函数;
3322 当a?x?2时,f?(x)?0,从而f(x)为区间[a,2]上的减函数.
33因此,当2?a?3时,m?f(1)?a?1或m?f(2)?4(a?2).
7当2?a?时,4(a?2)?a?1,故m?f(2)?4(a?2);
3当
7?a?3时,a?1?4(a?2),故m?f(1)?a?1. 3综上所述,所求函数的最小值 ?1?a,??0,? m??4(a?2),???a?1,?当a?1时;当1?a?2时;7 当2?a?时;37当a?时.36.(本小题满分14分,第一小问满分2分,第二、第三小问满分各6分)
设数列?an?的前n项和为Sn,已知a1?1,a2?6,a3?11,且
(5n?8)Sn?1?(5n?2)Sn?An?B,n?1,,,23?,
其中A,B为常数. (Ⅰ)求A与B的值;
(Ⅱ)证明:数列?an?为等差数列;
(Ⅲ)证明:不等式5amn?aman?1对任何正整数m,n都成立.
本小题主要考查等差数列的有关知识、不等式的证明方法,考查思维能力、运算能力. 解:(Ⅰ)由已知,得S1?a1?1,S2?a1?a2?7,S3?a1?a2?a3?18. 由(5n?8)Sn?1?(5n?2)Sn?An?B,知 ??3S2?7S1?A?B, ? 即
2S?12S?2A?B,2?3?A?B??28, ?2A?B??48,?解得 A??20,B??8. (Ⅱ)方法1
由(Ⅰ),得 (5n?8S)n?1?n(5? ① S2??n2?0, 8n)所以 (5n?3)Sn?2?(5n?7)Sn?1??20n?28. ② ②-①,得 (5n?3)Sn?2?(10n?1)Sn?1?(5n?2)Sn??20, ③ 所以 (5n?2)Sn?3?(10n?9)Sn?2?(5n?7)Sn?1??20. ④
④-③,得 (5n?2)Sn?3?(15n?6)Sn?2?(15n?6)Sn?1?(5n?2)Sn?0. 因为 an?1?Sn?1?Sn,
所以 (5n?2)an?3?(10n?4)an?2?(5n?2)an?1?0. 又因为 5n?2?0,
所以 an?3?2an?2?an?1?0, 即 an?3?an?2?an?2?an?1,n?1. 所以数列?an?为等差数列. 方法2
由已知,得S1?a1?1,
又(5n?8)Sn?1?(5n?2)Sn??20n?8,且5n?8?0, 所以数列?Sn?是唯一确定的,因而数列?an?是唯一确定的. 设bn(5n?3)n?5n?4,则数列?bn?为等差数列,前n项和Tn?2.
于是 (5n?8T)n?1?n(5?T2n?n)?n?(5(8)1)(n5?2?)n?(5nn22(?52)?3?)n?由唯一性得 bn?an,即数列?an?为等差数列. (Ⅲ)由(Ⅱ)可知,an?1?5(n?1)?5n?4. 要证
5amn?aman?1,
只要证 5amn?1?aman?2aman. 因为 amn?5mn?4,aman?(5m?4)(5n?4)?25mn?20(m?n)?16, 故只要证 5(5mn?4?)?1mn25?m2?0n(?)?1a6man2,
即只要证 20m?2n0?3?7a2man. 因为 2aman?am?an?5m?5n?8 ?5m?5n?8?(15m?15n?29)
?20m?20n?37,
所以命题得证.
2 ,08
备战2010高考数学――压轴题跟踪演练系列五
1.(本小题满分14分)
x2y2已知椭圆2?2?1(a?b?0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q
ab是椭圆外的动点,满足|F1Q|?2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足PT?TF2?0,|TF2|?0.
(Ⅰ)设x为点P的横坐标,证明|F1P|?a? (Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M, 使△F1MF2的面积S=b2.若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
cx; a本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分. (Ⅰ)证法一:设点P的坐标为(x,y).
由P(x,y)在椭圆上,得
b22|F1P|?(x?c)?y?(x?c)?b?2xa
c?(a?x)2.a2222由x?a,知a?ccx??c?a?0,所以 |F1P|?a?x.………………………3分 aa证法二:设点P的坐标为(x,y).记|F1P|?r1,|F2P|?r2,
则r1?(x?c)2?y2,r2?(x?c)2?y2.
cx. ac证法三:设点P的坐标为(x,y).椭圆的左准线方程为a?x?0.
a由r1?r2?2a,r12?r22?4cx,得|F1P|?r1?a?
2cac|FP|c由椭圆第二定义得,即|F1P|?|x?1|?|a?x|. ?acaaa2|x?|c
由x??a,知a?ccx??c?a?0,所以|F1P|?a?x.…………………………3分 aa(Ⅱ)解法一:设点T的坐标为(x,y).
当|PT|?0时,点(a,0)和点(-a,0)在轨迹上.
当|PT|?0且|TF2|?0时,由|PT|?|TF2|?0,得PT?TF2. 又|PQ|?|PF2|,所以T为线段F2Q的中点. 在△QF1F2中,|OT|?1|F1Q|?a,所以有x2?y2?a2. 2222综上所述,点T的轨迹C的方程是x?y?a.…………………………7分 解法二:设点T的坐标为(x,y). 当|PT|?0时,点(a,0)和点(-a,0)在轨迹上.
当|PT|?0且|TF2|?0时,由PT?TF2?0,得PT?TF2. 又|PQ|?|PF2|,所以T为线段F2Q的中点. ?x???设点Q的坐标为(x?,y?),则??y???x??c,2 y?.2
?x??2x?c,因此? ①
?y??2y.222由|F1Q|?2a得(x??c)?y??4a. ②
将①代入②,可得x?y?a.
综上所述,点T的轨迹C的方程是x?y?a.……………………7分
222222 (Ⅲ)解法一:C上存在点M(x0,y0)使S=b2的充要条件是
22?x0?y0?a2, ? ?12??2c|y0|?b.?2③ ④
2b2. 所以,当a?b时,存在点M,使S=b2; 由③得|y0|?a,由④得|y0|?cc2b当a?时,不存在满足条件的点M.………………………11分 c
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新幼儿教育2010年高考数学压轴题跟踪演练(7+9+8+6+7+7) (9)全文阅读和word下载服务。
相关推荐: