第一范文网 - 专业文章范例文档资料分享平台

Periodic bifurcation from families of periodic solutions for semilinear differential equati(4)

来源:用户分享 时间:2021-06-02 本文由绾桉 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

propertiesofthePoincar´emapforsystem(1.1)areestablishedinSection3.Bothnecessaryandsu cientconditionsforbifurcationofperiodicsolutionsto(1.1)areobtainedinSection4.Finally,intheappendixofSection5wegiveaproofofatechnicalresultneededinSection3.

2Lyapunov-Schmidtreduction

F(ξ,ε)=P(ξ) ξ+εQ(ξ,ε),LetEbeaBanachspaceandconsiderthefunctionF:E×[0,1]→Egivenby

whereP:E→EandQ:E×[0,1]→E.Assumethat

(A1)thereexisth0∈Rk,r0>0andafunctionS∈C1(BRk(h0,r0),E)suchthat

P(ξ)=ξforanyξ∈Z={S(h):h∈BRk(h0,r0)}.

HereandinwhatfollowsBX(c,r)denotestheballinthenormedspaceXcenteredatcwithradiusr>0.Itiswellknownthat,undertheassumption(A1)withP∈C1(E,E)andQ∈C1(E×[0,1],E),theLyapunov-Schmidtreduction([4],Ch.2,§4)allowstosolvetheequation

F(ξ,ε)=0,(2.1)

forε>0su cientlysmall.NexttheoremextendsthisresulttothecasewhenQsatis esthefollowingLipschitzcondition:

(L)ForanyR>0thereexistsL(R)>0suchthat

Q(ξ1,ε) Q(ξ2,ε) ≤L(R) ξ1 ξ2

wheneverξ1,ξ2∈BE(0,R)andε∈[0,1].

Theorem2.1LetP∈C1(E,E),Q∈C0(E×[0,1],E),whereEisaBanachspace.AssumethatQsatis es(L).Moreover,assume(A1)and

(A2)dimS′(h0)Rk=k.

LetE1,h=S′(h)Rk.LetE2,hbeanysubspaceofEsuchthatE=E1,h

assumethat E2,hand(A3)thereexistsr0>0suchthatboththeprojectorsπ1,hofEontoE1,halong

E2,handπ2,hofEontoE2,halongE1,harecontinuousinh∈BRk(h0,r0),(A4)forξ0=S(h0)wehave

π2,h0(P′(ξ0) I)π2,h0isinvertibleonE2,h0.

3(2.2)

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科Periodic bifurcation from families of periodic solutions for semilinear differential equati(4)全文阅读和word下载服务。

Periodic bifurcation from families of periodic solutions for semilinear differential equati(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1198902.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top