S.-C.Chengetal./PatternRecognition43(2010)267--279269
Tofindthedirectionnumbersofthe3DprincipalplaneH,taketheoriginatthecentroid;thentheinertiamomentofthepointsinS3abouttheplaneHis
I(A,B,C)=
(Ax+By+Cz)2.(6)
(x,y,z)∈S3
DifferentiateswithrespecttoA,BandC,andequatingtozerogives2
x(Ax+By+Cz)=0(x,y,z)∈S3
2
y(Ax+By+Cz)=0(x,y,z)∈S3
2
z(Ax+By+Cz)=0.
(x,y,z)∈S3
Hence,
m2,0,0A+m0,1,1B+m1,0,1C=0m1,1,0A+m0,2,0B+m0,1,1C=0m1,0,1A+m0,1,1B+m0,0,2C=0(7)
wherems,t,uisa3Dmomentgivenby
m
s,t,u=xsytzu.
(8)
(x,y,z)inS3
Tosolvethesetoflinearsystemin(6),wegetAm0,2,0m1,0,1 m1,1,0m0,1,1
B=
m(9)
2,0,0m0,1,11,1,0m1,0,1=k1Cm0,2,0m1,0,1 m0,1,1m1,1,0
B=
m=k2.(10)
0,0,2m1,1,00,1,1m1,0,1
Thevaluesofk1andk2canbeobtaineddirectlyfromthevaluesof3Dmomentswhichcanbecomputedinadvanceaccordingto(8).CombiningEqs.(3),(9),and(10),itissimpletoobtain
(A,B,C)= k1
,1k2 .1+k21+k2,21+k21+k2(11)21+k21+k22OncetheprincipalplaneHisobtained,foreach3Dvector c
=(x,y,z)wecancomputethedepthfrom ctoHbydH( c
)=Ax+By+Cz.(12)
3.Theproposed3Dmeshsegmentation
Clustering-basedsegmentationusesiterativeclusteringasatool
toseparatetheinputmeshintomultipleregionsaccordingtolocalpropertiesofvertices.Forexample,Shlafmanetal.[30]usedk-meansclusteringtoprovideameaningfulsegmentation.However,thepro-ducedregionshavejaggedboundaries,showninFig.1(a).Theprob-lemswithapplyingk-meansclusteringtosegment3Dmeshmodelsarethreefold:(1)k-meansclusteringdoesnotguaranteegeneratingcontiguousclustersandthusmightresultinseveralsmalluniformregions.(2)Themethodselectsanumberofseedverticesandthenassignseachtriangletotheclusterofthenearestseedvertex.Theresultingregionsaredependentontheinitialsetofseedvertices.Moreover,itisnotadaptivetotheshapesofmeshsurfaces.(3)Thenumberofclusters,i.e.,thevalueofkisingenerallyunknown.Thisworkpresentsasegmentationframeworkincorporatingk-meansclusteringandprincipalplaneanalysistosolvetheaboveproblems.Fig.1(b)showsasegmentationexampleusingtheproposedmethod.
Thispaperintroducesamultispacegeneralizationofthemulti-pleprincipalplaneanalysis(whichwecallMPPA),wheremoresub-spacesarecreatedtoapproximatethedifferentuniformregionsof
theinputmeshmodel.TheMPPAcanbeusedtogenerateacompactrepresentationoftheoriginalmeshmodelbymappingeachvertexonlyintothebest-suitedsubspace,showninFig.2.Then,allthesubspacesaresimultaneouslyusedtoencodeeachconnectivityandvertex,thusprovidingmultiplepointsofviewtotheinputmesh.
LetV={ v
i∈R3|i=1,...,n}beasetofn3DverticesofaninputmeshM,thenforagivenpartition ={P1,P2,...,P
k}ofVsuchthatPi=V,Pi∩Pj= i,i,j=1...k,i ji=1...k
theMPPAsegmentationisdefinedbythesetofsubspacesS={SSc¯i,Hi,i=1,...,k},where¯c1/|S
i|Si=
i=i|v ∈Pi v
isthecentroidcoordinateofSiandHiistheprincipalplaneofSidefinedin(2).Eachsubspacedeterminesaprincipalplane,andthesetofprincipalplanesprovidesacompactrepresentationoftheoriginalmeshmodel.
AhugenumberofMPPAsegmentationsmaybederivedfromthesameinputmeshmodelbyvaryingkand .Theapproachtoobtainbetterkand aimsatminimizingthemean-squareaveragerecon-structionerroron ,definedasaweightedsumofreconstructionerrorsrelatedtothesubspaceSiapproximatedbyHi
k(k, )=1
n
mi|dHi( v
)|(13)
i=1
v
∈Piwherem )isthedepthvaluev
HiisthecardinalityofPianddHi(v
from toidefinedin(12). (k, )isthenacostfunctionrepresentingtheinputmeshmodelMandusedasameritfunctionforchoosingkand .
Obviously,thelargervalueofkleadstoasmallervalueof (k, )usingtheunconstrainedminimizationprocess.Alimitcaseiswheneachtriangleconstructsaregionandenablesazero-errorsolution,i.e., (k, )=0.Ontheotherhand,employingafewelementsforcreatingaregionwouldnotachievehighcompressionrate.Thus,thisworkproposesapracticalstrategytodetermineanoptimalMPPAsegmentationusingk-meansclustering.Let maxbethemaximumerrorchosenfor (k, ).Thealgorithmproceedsbyincreasingkuntilfindingasolution(k, )suchthat (k, ) maxorthemaximum
allowednumberofregionskmaxisreached.Let betheoptimalsegmentationforapartition k
k.TheMPPAsegmentationalgorithmisseparatedintothreemainsteps:
MPPA(V, max,kmax){k=1;
=∞;//setstheoptimalreconstructionerrorfoundingtobeaverylargenumberdo{
k=k+1;
k = Generate(k,V);//generatesinitialsegmentationfork= Optimize(k, k);//ifk
optimizesthepartition k( > (k, )){= (k, k
k);//updatestheoptimalreconstructionerrorfound-ing
t=k;// tisthebestsegmentationfounding}
}while( > max∧k<kmax)return(t, t);}
Obviously,requiringsmallreconstructionerrors,i.e.,smallvaluesof max,allowstheregionstobetterfittheinputmeshmodel,butatthesametime,determinesthecreationofalargernumberofregions.Thefollowingdiscussestheoptimizationprocedure( -Optimize)andtheinitializationprocedure( -Generate)indetail.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科A novel 3D mesh compression using mesh segmentation with multiple principal plane analysis(5)全文阅读和word下载服务。
相关推荐: