Meshsegmentationisthefirststeptowardsregion-based3Dmeshcompression[19].Segmentationismorecommonintheimageprocessingarea,andhasbeenrecentlyintroducedintothe3Dmesharea[20–25].Amongexistingalgorithms,thewatershed-basedap-proachhasreceivedmoreattention.Thisapproachusesdiscretecurvatureateachmeshvertexastheheightfieldthatdriveswa-tershedsegmentation.Thecurvatureestimationfor3Dmeshesiscomputationallyexpensive[20–22],asitismathematicallydefinedforasmoothsurfaceonly.Featuresensitivemeshsegmentationthatmaintainssalientfeaturesisimportantformanycomputergraphicsandgeometricmodelingapplications[23].Chengetal.[24]proposedapatch-growingapproachusingashortest-pathlabelingtechniquetosegmentthemodelintomultipleregions.Zhang[25]proposedasimplesegmentationalgorithmusingGaussiancurva-tureanalysis,efficientforcertain3Dmodels.However,similartootherexistingmethods,thisalgorithmisdefectivewhenprocessingahigh-resolution3Dmodel,asthegeometriccharacteristicsofad-jacentpolygonsinsuchamodelaretooclosetobedifferentiated.Therefore,anefficientandrobustalgorithmisneededfor3Dmeshsegmentation.
Thecurrentworkproposesanefficientsegmentation-based3Dmeshcompressionsystem,whichprovidesprogressivetransmissionfor3Dmodelsoverabandwidth-limitednetwork.Thisalgorithmfirstperformsameshsegmentationscheme,basedonfusionofthewell-knownk-meansclusteringandtheproposedmultipleprinci-palplaneanalysistoseparatetheinput3Dmeshintoasetofdis-jointedpolygonalregions.Theboundaryindexingschemeforthewholeobjectiscreatedbyassemblinglocalregions.Finally,apro-posedtriangletraversalschemeencodesconnectivityandgeome-tryinformationsimultaneouslyforeveryregionundertheguidanceofboundaryindexing.Atthedecoder,basedonboundaryindexing,thisworkobtainseachindividualregionandreconstructsthewholeobjectusingconnectivityandgeometrycodinginformation.Simula-tionresultsdemonstratethattheproposedalgorithmobtainsgoodcompressionperformance.
Theremainderofthispaperisorganizedasfollows.Section2presentsthemethodtoseparatetheinputtrianglemeshintomul-tipleuniformregionsusingak-meansclusteringwiththeprincipalplaneanalysistechnique.Thecurrentapproachto3DmeshmodelcompressionisdescribedindetailinSection3.Section4presentsexperimentalresultsobtainedfromapplyingtheproposedmethodtotest3Dmodels.Section5outlinesabriefconclusion.2.Clustering-based3Dmeshsegmentation
Thissectionpresentsaclustering-based3Dmeshsegmentationmethodbasedonk-meansclustering[25–27]withtheproposedprincipalplaneanalysis[28].Toclearlyintroducetheproposedseg-mentationscheme,thek-meansmethodandprincipalplaneanalysisarefirstdescribed.2.1.k-meansclustering
In1967,MacQueenproposedthek-means[26]algorithmasoneofthesimplestunregulatedlearningalgorithmstosolvetheclus-teringproblem.Theprocedurefollowsasimpleandeasymethodtoclassifyagivendatasetintokofgroups.Themainideaistodefinekcentroids,oneforeachgroup.Thesecentroidsshouldbeproperly
placedbecausedifferentlocationscausedifferentresults.Choosingthemasfarawayaspossiblefromeachotheristhebetterchoice.Thenextsteptakeseachpointbelongingtoagivendatasetandassociatesittothenearestcentroid.Whennopointispending,thefirststepisaccomplishedwithanearlygrouping.Atthisstage,knewcentroidsofgroupsresultingfromthepreviousstepneedre-calculating.Afterobtainingknewcentroids,anewbindingmusttakeplacebetweenapointinthesamedatasetandthenearestnewcentroid,generatingaloop.Thisloopmaycausekcentroidstochangetheirlocationstepbystepuntilnomorechangesareaccom-plished.Inotherwords,centroidsdonotchangeanymore.Finally,thisalgorithmaimsatminimizinganobjectivefunction,inthiscaseasquarederrorfunction.TheobjectivefunctionJ k=
n x(j)
i uj 2
(1)
j=1i=1
where x(j)
(j)
i uj 2isachosendistancemeasurebetweenadatapointxiandthegroupcentroiduj,isanindicatorofthedistanceofndatapointsfromtheirrespectivegroupcenters.
Thealgorithmiscomposedofthefollowingsteps:(1)Datapointsareassignedatrandomtothekgroups.Thecentroid
iscomputedforeachgroup.
(2)Eachpointisassignedtothegroupwiththeclosestcentroid.(3)Whenallpointshavebeenassigned,recalculatethepositionsof
thekcentroids.
(4)RepeatSteps(2)and(3)untilcentroidsstopchanging.Thispro-ducesaseparationofthepointsintokgroupsfromwhichthemetrictobeminimizedcanbecalculated.k-meansisasimplealgorithmthathasbeenadaptedtomanyproblemdomains.Asthefollowingshows,itisagoodcandidateforextendingworkwith3Dmeshsegmentation.2.2.Principalplaneanalysisfor3Dmodels
In[29],thisworkproposesa3Dmodelretrievalmethodusingprincipalplaneanalysisthatdefinestheprincipleplaneasaskele-tonrepresentationcorrespondingtothesymmetricsurfacefora3Dobject.
Theprincipalplanecanbeconvenientlyrepresentedintermsofmoments.Inthecaseof3DfeaturespaceS3,theprincipalplaneHcanberepresentedasAx+By+Cz=D
(2)
whereA,B,andCarethedirectionalnumbersofHthatsatisfythefollowingrelationship:A2+B2+C2=1.
(3)
Thedistancefroma3Dvector c=(x,y,z)toHisgivenbyf(x,y,z)=Ax+By+Cz D.
(4)
Letthecentroid¯c
ofthe3Dspacebedefinedas N
(¯x,y¯,z¯)= 1 1 N1
NNxi,yi,zi
(5)
i=1
Ni=1
N
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科A novel 3D mesh compression using mesh segmentation with multiple principal plane analysis(3)全文阅读和word下载服务。
相关推荐: