5.能分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,不超过三步)。
6.能解决有关小数、分数和百分数的简单实际问题。 7.经历与他人交流各自算法的过程。 8.在解决具体问题的过程中,能选择合适的估算方法,养成估算的习惯(参见例25、例26)。
9.能借助计算器进行运算,解决简单的实际问题,探索简单的数学规律(参见例27)。
(三)式与方程
1.在具体情境中会用字母表示数。
2.结合简单的实际情境,了解等量关系。
3. 了解方程的作用,能用方程表示简单情境中的等量关系。 4.能解简单的方程(如3x+2=5,2x-x=3)。
(四)正比例、反比例
1.在实际情境中理解比及按比例分配的含义,并能解决简单的问题。 2.通过具体问题认识成正比例的量或反比例的量。
3.能根据给出的有正比例关系的数据在方格纸上画图,并根据其中一个量的值估计另一个量的值(参见例28)。
4.能找出生活中成正比例和成反比例量的实例,并进行交流。
(五)探索规律
探求给定事物中隐含的规律或变化趋势(参见例29、例30)。
二、图形与几何
(一)图形的认识
1.结合实例了解线段、射线和直线。
2.体会两点间所有连线中线段最短,知道两点间的距离。
3.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。 4.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。 5.通过观察、操作,认识平行四边形、梯形和圆,会用圆规画圆,知道扇形。
6.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180°。
7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。 8.能辨认从不同方向(前面、侧面、上面)看到的物体的形状图(参见例31)。
9.通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
(二)测量
1.能用量角器量指定角的度数,能画指定度数的角,会用三角尺画30°,45°,60°,90°角。
2.探索并掌握三角形、平行四边形和梯形的面积公式。
精选
3.认识面积单位:千米2、公顷。
4.通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式;探索并掌握圆的面积公式。
5.会用方格纸估计不规则图形的面积(参见例32)。
6.通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
7.结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。
8.探索某些实物(如土豆等)体积的测量方法(参见例33)。
(三)图形的运动
1.进一步认识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴;能在方格纸上补全一个简单的轴对称图形。
2.通过观察实例,在方格纸上认识图形的平移与旋转,能在方格纸上按水平或垂直方向将简单图形平移,能在方格纸上将简单图形旋转90°(参见例34)。
3.能利用方格纸等按一定比例将简单图形放大或缩小。
4.欣赏生活中的图案,运用平移、旋转和轴对称在方格纸上设计简单的图案。
(四)图形与位置
1.了解比例尺;在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
2.能根据物体相对于参照点的方向和距离确定其位置。 3.会绘制并描述简单的路线图(参见例35)。
4.能在方格纸上用数对表示位置,知道数对(限于正整数)与方格纸上点的对应;在具体情境中,体验利用方格纸确定数对的位置的过程(参见例36)。
三、统计与概率
(一)简单数据统计过程
1.经历简单的收集、整理、描述和分析数据的过程(可使用计算器)。 2.会根据实际问题设计简单的调查表,选择适当的方法(如调查、试验、测量)收集数据。
3.认识条形统计图、扇形统计图、折线统计图;能根据分析问题的需要,选择适当的统计图(参见例37、例38)。
4.体会平均数的意义,能计算平均数,能用自己的语言解释其实际意义(参见例37)。
5.能从报纸杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表(参见例38)。
6.能解释统计结果,根据结果作出简单的判断和预测,并能进行交流(参见例37)。
(二)随机现象发生的可能性
精选
1.结合具体情境,了解简单的随机现象;能列出简单的随机现象中所有可能发生的结果(参看例39)。
2.通过实验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并和同学交流(参看例39)。
四、综合与实践
1. 经历有目的、有设计、有步骤的综合与实践活动,积累数学活动的经验。 2.结合实际情境,体验发现和提出问题、分析和解决问题的过程。 3.初步获得在给定目标下,设计解决问题方案的经验。 4. 通过应用和反思,加深对所用知识和方法的理解,了解所学知识之间的联系。
(参见例40、例41、例42、例43)
精选
新课标自我解读
一、数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
人人都能获得良好的数学教育:良好的数学教育,就是不仅懂得了知识,还懂得了基本思想,在学习过程中得到磨练。义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。
课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;
要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;
要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。
不同的人在数学上得到不同的发展:现代儿童观认为,在每一个儿童身上都蕴藏着巨大的教育潜能,我们的教育必须充分尊重儿童的内在素质,即自然天性,小心加以呵护、开发。要面对每一个有差异的个体,适应每一个学生不同发展的需要,要为每一个学生提供不同的发展机会与可能。数学课程必须立足于关注学生的一般发展,它应当是“为了每一个孩子”健康成长的课程,而不能成为专门用来淘汰的“筛子”。
教学实践:
①了解并掌握不同家庭中的孩子在家庭和学校中的学习状况,充分了解学生的学习起点, ②创设多元智能的环境,把握“为多元而教”和“用多元而教”的原则,革新学习的方式,开发与应用“多维”学习活动的教学资源,创设一个适合儿童生活和学习的“聪明环境”,整合教育资源,形成新的合力,让每一个儿童的创造潜能在学习中得到开发,让每一个儿童的多元智能得到培养,最大限度地激发学生实现自我的愿望和学习的最优化。
③“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞。”恰当的评价将拉近师生的情感,使教师由一名评判者变成学生的鼓励者和支持者,使学生得到尊重,使每个孩子都能从学习中体会到快乐和成功的喜悦。建立一套全方位的多元化的科学的评价体系,是开发与实施多维学习的有力保障。
二、课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。
⑴它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。 ⑵课程内容要贴近学生的生活,有利于学生经验、思考与探索。
⑶内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与知识系统性的关系。
⑷课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需求。
1、它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。
数学是研究数量关系和空间形式的科学。学生学数学与不学数学最本质的区别在于培养人直观的能力、演绎的能力、逻辑地思考!其实就是以数学知识为载体促进学生思维的发展。这是数学学习的本质。
精选
相关推荐: