第一范文网 - 专业文章范例文档资料分享平台

2013年广东高考文科数学A卷试题及答案(最新清晰完整版) (2)

来源:用户分享 时间:2020-06-21 本文由独走人海 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(3)由(1)可知GE//CF,结合(2)可得GE?平面DFG.

11111?13?13??DG?FG?GF???????? ???32323?32?332422?VF?DEG?VE?DFG?19. 解:(1)当n?1时,4a1?a2?5,a2?4a1?5,?an?0?a2?24a1?5

22(2)当n?2时,4Sn?1?an?4?n?1??1,4an?4Sn?4Sn?1?an?1?an?4

an?1?an?4an?4??an?2?,?an?0?an?1?an?2

222?当n?2时,?an?是公差d?2的等差数列.

?a2,a5,a14构成等比数列,?a5?a2?a14,?a2?8??a2??a2?24?,解得a2?3,

22由(1)可知,4a1?a2?5=4,?a1?1

?a2?a1?3?1?2?

2?an?是首项a1?1,公差d?2的等差数列.

?数列?an?的通项公式为an?2n?1. (3)

1a1a2?1a2a3???1anan?1?11?3?13?5?15?7???1?2n?1??2n?1?

?1??1??11??11??11?????1???????????????2??3??35??57??2n?12n?1??1?1?1?1??.??2?2n?1?2

?20. 解:(1)依题意d?0?c?22?322,解得c?1(负根舍去)

?抛物线C的方程为x?4y;

2(2)设点A(x1,y1),B(x2,y2),P(x0,y0),

由x2?4y,即y?142x,得y??12x.

∴抛物线C在点A处的切线PA的方程为y?y1?x12(x?x1),

即y?x12x?y1?12x1.

2 6

∵y1?14x1, ∴y?2x12x?y1 .

∵点P(x0,y0)在切线l1上, ∴y0?x22x12x0?y1. ①

同理, y0?x0?y2. ②

综合①、②得,点A(x1,y1),B(x2,y2)的坐标都满足方程 y0?∵经过A(x1,y1),B(x2,y2)两点的直线是唯一的, ∴直线AB 的方程为y0?x2x2x0?y.

x0?y,即x0x?2y?2y0?0;

(3)由抛物线的定义可知AF?y1?1,BF?y2?1, 所以AF?BF??y1?1??y2?1??y1?y2?y1y2?1

?x?4y联立??x0x?2y?2y0?022,消去x得y22??2y0?x02?y?y0?02,

?y1?y2?x0?2y0,y1y2?y0

?x0?y0?2?0

?AF?BF?y0?2y0?x0?1=y0?2y0??y0?2??1

22221?9?2=2y0?2y0+5=2?y0??+2?2??当y0??'2

9212时,

AF?BF取得最小值为

2

21. 解:f?x??3x?2kx?1

(1)当k?1时f?x??3x?2x?1,??4?12??8?0

?f''2?x??0,f?x?在R上单调递增.

'2(2)当k?0时,f?x??3x?2kx?1,其开口向上,对称轴x?1? 且过?0,k3k ,

x?k3-k (i)当??4k?12?4?k?23??k?3?0,即?3?k?0时,f?'?x??0,f?x?在?k,?k?上单调

递增,

7

从而当x?k时,f?x? 取得最小值m?f?k??k ,

当x??k时,f?x? 取得最大值M?f??k???k?k?k??2k?k. (ii)当??4k?12?4?k?23333??k?23?0,即k???3时,令f'?x??3x2?2kx?1?0

解得:x1?k?k?332,x2?k?k?33,注意到k?x2?x1?0,

2k3?k,从而k?x2?x1?0;或者由对称结合图像判断)

(注:可用韦达定理判断x1?x2??m?min?f?f13,x1?x2??k?,f?x1??,M32?max?f??k?,f?x2??

??x12?x1??f?k??x1?kx1?x1?k??x1?k?1??0

?f?f?x?的最小值m?x2??f?f3?k??k,

23222??k??x2?kx2?x2???k?k?k?k?=?x2?k?[?x2?k??k?1]?0 ?f?f?x?的最大值M??k???2k?k

33综上所述,当k?0时,f?x?的最小值m?f?k??k,最大值M?f??k???2k?k 解法2(2)当k?0时,对?x??k,?k?,都有

f(x)?f(k)?x?kx?x?k?k?k?(x?1)(x?k)?0,故f32332232332?x??f?k?

22f(x)?f(?k)?x?kx?x?k?k?k?(x?k)(x?2kx?2k?1)?(x?k)[(x?k)?k?1]?0故

f?x??f??k?,而

f(k)?k?0,f(?k)??2k?k?0

33所以 f(x)max?f(?k)??2k?k,f(x)min?f(k)?k

8

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新小学教育2013年广东高考文科数学A卷试题及答案(最新清晰完整版) (2)全文阅读和word下载服务。

2013年广东高考文科数学A卷试题及答案(最新清晰完整版) (2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1090195.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top