1.抽样调查 (1)抽样调查
通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查. (2)总体和样本
调查对象的全体称为总体,被抽取的一部分称为样本. (3)抽样调查与普查相比有很多优点,最突出的有两点: ①迅速、及时;
②节约人力、物力和财力. 2.简单随机抽样
(1)简单随机抽样时,要保证每个个体被抽到的概率相同. (2)通常采用的简单随机抽样的方法:抽签法和随机数法. 3.分层抽样
(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样. (2)分层抽样的应用范围:
当总体是由差异明显的几个部分组成时,往往选用分层抽样. 4.系统抽样
系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械
抽样. 【思考辨析】
判断下面结论是否正确(请在括号中打“√”或“×”) (1)简单随机抽样是一种不放回抽样.( √ )
(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( × ) (3)系统抽样在起始部分抽样时采用简单随机抽样.( √ )
(4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( × )
(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( × )
1.(教材改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( ) A.33人,34人,33人 C.20人,40人,30人 答案 B
解析 因为125∶280∶95=25∶56∶19, 所以抽取人数分别为25人,56人,19人.
2.(2015·四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( ) A.抽签法 C.分层抽样法 答案 C
解析 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.
3.将参加英语口语测试的1000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为( ) A.700 C.695 答案 C
B.669 D.676 B.系统抽样法 D.随机数法
B.25人,56人,19人 D.30人,50人,20人
解析 由题意可知,第一组随机抽取的编号l=15,
N1000
分段间隔数k===20,则抽取的第35个编号为a35=15+(35-1)×20=695.
n50
4.(教材改编)某公司共有1000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________. 答案 50 解析
1000x
=,x=50. 804
5.某高中共有1200人,其中高一、高二、高三年级的人数依次成等差数列.现用分层抽样的方法从中抽取48人,那么高二年级被抽取的人数为________. 答案 16
解析 设高一、高二、高三年级的人数分别为a-d,a,a+d,则有3a=1200,所以a=400,400
则高二年级被抽取的人数为48×=16.
1200
题型一 简单随机抽样
例1 (1)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
7816 3204 6572 9234 0802 4935 6314 8200 0702 3623 4369 4869 9728 6938 0198 7481 A.08B.07C.02D.01 (2)下列抽取样本的方式不属于简单随机抽样的有________. ①从无限多个个体中抽取100个个体作为样本;
②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里; ③从20件玩具中一次性抽取3件进行质量检验;
④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. 答案 (1)D (2)①②③④
解析 (1)由题意知前5个个体的编号为08,02,14,07,01.
(2)①不是简单随机抽样.
②不是简单随机抽样.由于它是放回抽样.
③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.
④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.
思维升华 应用简单随机抽样应注意的问题
(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.
(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.
下列抽样试验中,适合用抽签法的有( )
A.从某厂生产的5000件产品中抽取600件进行质量检验 B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验 C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验 D.从某厂生产的5000件产品中抽取10件进行质量检验 答案 B
解析 A,D中的总体中个体数较多,不适宜抽签法,C中甲、乙两厂的产品质量有区别,也不适宜抽签法,故选B. 题型二 系统抽样
例2 (1)(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( ) A.3B.4C.5D.6
(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11B.12C.13D.14 答案 (1)B (2)B
解析 (1)由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.选B.
720-480240840
(2)由=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为=
422020=12. 引申探究
1.本例(2)中条件不变,若第三组抽得的号码为44,则在第八组中抽得的号码是________. 答案 144
解析 在第八组中抽得的号码为(8-3)×20+44=144.
2.本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28
解析 因为在编号[481,720]中共有720-480=240人,又在[481,720]中抽取8人,
840所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为=3028.
思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.
(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.
(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.
将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个
容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A.26,16,8 C.25,16,9 答案 B
B.25,17,8 D.24,17,9
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新小学教育2017版高考数学北师大版(理)一轮复习第11章统计与统计案例11.1随机抽样文档 全文阅读和word下载服务。
相关推荐: