14时,y最大值= 8;
12
244 . 当x=-3时,y最小值=
33
14
所以当-3≤x≤ 时,此函数的最大值为8,最小值为.
23
所以当x=
例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米. (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象. 解 (1)因为100=5xy,所以y (2)x>0. (3)图象如下:
说明 由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质. 1.反比例函数的图象是双曲线(hyperbola).
2.反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
五、检测反馈
1.在同一直角坐标系中画出下列函数的图象: (1)y
20 . x
13; (2)y .
xx
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科18.4 反比例函数(22)全文阅读和word下载服务。
相关推荐: