第一范文网 - 专业文章范例文档资料分享平台

This is page 1 Printer Opaque this Empirical Bayesian Spatial Prediction Using Wavelets(2)

来源:用户分享 时间:2021-06-02 本文由幼稚园大佬 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

ABSTRACT Wavelet shrinkage methods, introduced by Donoho and Johnstone

2

Hsin-Cheng Huang, Noel Cressie

following separable form: (x; y)= (x) (y); x; y 2 IR; and there are three wavelet functions given by, (1) (x; y)= (x) (y); (2) (x; y)= (x) (y); (3) (x; y)= (x) (y): For j; k1; k2 2 Z, write Z 2j (2j x? k1; 2j y? k2 ); j;k1;k2 (x; y ) (m) 2j (m) (2j x? k1; 2j y? k2 ); m= 1; 2; 3: j;k1;k2 (x; y ) Then any function g 2 L2 IR2 can be expanded as g(x; y)=X?

k1;k2

ck1;k2 J0;k1;k2 (x; y)+

1 3 X X Xn

j=J0 k1;k2 m=1

o ) ) d(m1;k2 (m1;k2 (x; y): j;k j;k

Because of this direct connection between one-dimensional wavelets and spatial wavelets, we shall present most of the methodological development in IR. However, in a subsequent section, we do give an application of our wavelet methodology to two-dimensional spatial prediction of an image. Wavelets have proved to be a powerful way of analyzing complicated functional behavior because in wavelet space, most of the"energy" tends to be concentrated in only a few of the coe cients fcJ0;k g; fdj;k g. It is interesting to look at the statistical properties of wavelet expansions; that is, if f (

) is a random function in L2 (IR), what is the law of its wavelet coe cients? We shall formulate this question more speci cally in terms of the discrete wavelet transform, which we shall now discuss. Suppose that we observe Y ( ) at a discrete number n= 2J points; that is, we have data Y= (Y1;:::; Yn ), where Yi= Y (ti ) and ti= i=n; i= 1;:::; n. The discrete wavelet transform matrix Wn of Y is an orthogonal matrix such that (1) w?(wJ0 )0; wJ0 0;:::; w0J?1 0= WnY is a vector of scaling function coe cient at scale J0 and wavelet coe cients at scales J0;:::; J? 1 (Mallat, 1989). Thus, if Y is random, so too is w. In all that is to follow, we shall construct probability models directly for w, although it should be noted that if Y ( ) is a stationary process, then wJ0 and fwj: j= J0;:::; J? 1g are also stationary processes, except for some points near the boundary (Cambanis and Houdre, 1995). We assume the following Bayesian model: wj; 2 Gau(; 2 I ); (2)? j; Gau; ( ); (3)

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技This is page 1 Printer Opaque this Empirical Bayesian Spatial Prediction Using Wavelets(2)全文阅读和word下载服务。

This is page 1 Printer Opaque this Empirical Bayesian Spatial Prediction Using Wavelets(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1199930.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top