第一范文网 - 专业文章范例文档资料分享平台

数字图像处理-第五章3 (2)

来源:用户分享 时间:2021-06-02 本文由北葵向暖 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

Chapter 5 Discrete Image Transform5.1 Fundamental Concept 5.2 Cosine Transform 5.3 Rectangular Wave Transform 5.4 Principle-Component Analysis and K-L Transform 5.5 Wavelet Transform

5.1 Fundamental Concept5.1.1 One-Dimensional Discrete Linear Transform

Definition. if x is an N 1 vector and T is an N N matrix, then y Tx defines a linear transform of the vector x. The matrix T is also called the kernal matrix of the transform. Example: the rotation of a vector in a two-dimensional coordinate system. y1 cos y sin 2 sin x1 x cos 2

Inversion: the original vector can be recovered by the inverse transform x T 1 y provided that T is nonsingular.

5.1.2 1D discrete orthogonal transform Unitary matrix (酉矩阵): n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩 阵(Unitary Matrix)。 一个简单的充分必要判别准则是: 方阵U的共扼转置乘以U等于单位阵,则U是酉矩阵。酉矩阵 的逆矩阵与其伴随矩阵相等。

5.1.2 1D discrete orthogonal transform

Unitary transform: y Tx If T is a unitary matrix, then T 1 T * , and TT * T * T I。 Orthogonal transform: If T is a real transform, then the unitary transform is an orthogonal one. T 1 T ,TT I。

Orthogonal basis: each line of the orthogonal matrix T is called its orthonormal basis. This means that any N-by-1 sequence can be viewed as representing a vector from the origin to a point in N-dimensional space. The orthonormal basis are orthogonal to each other.

In summary, a unitary linear transform generates y, a vector of N transform coefficients, each of which is computed as the inner product of the input vector x with one of the rows of the transform matrix T.The forward transform: The inverse transform:

y Txx T 1 y

5.1.3 Two-Dimensional Discrete Linear Transform

The general linear transform that takes the N N matrix F into the transformed N N matrix G is G u , v x, y, u , v F x, y x 0 y 0 N 1 N 1

0 u, v N 1

is the kernal function of the transform, which is a N 2 N 2 block matrix having N rows of N blocks, each of which is an N N matrix. The blocks are indexed by u , v and the elements of each block by x, y.

Separatable: If the kernal function can be separated into the product of rowwise and columnwise component functions. For some (u,v), x, y, u , v Vc y, v Vr x, u then the transform is called separable. It means that it can be carried out in two steps__ N 1 G u , v Vc y, v f x, y Vr x, u x 0 y 0 G Tc ' FTr 'N 1

Vr(x u)

Vc(y v) Tr

Example : 2D function e , x and y takes 0,1. 1 轾0 x2 + y 2 x2 y2 2 犏 e e 2 2 犏 the matrix is 犏 1 . But e = e e 2,

- 1 犏 2 e e 犏 臌 0 轾 1 e 犏 轾 0 2 犏 which is equal to 犏 e . 1 ×e 犏 犏 e 2 臌 犏 臌

x2 + y 2 2

Symmetric: If the two component functions are identical, the transfrom is also called symmetric. N 1 G V y, v f x, y V x, u TFT x 0 y 0 It is a unitary transform if T is a unitary matrix, called the kernal matrixN 1

of the transform. The inverse transform is F T 1GT 1 T * GT *

Orthogonal Transformations: A unitary matrix with real elements is orthogonal. F = T 'GT ' If T is a symmetric matrix, as is often the case, then the forward and inverse transforms are identical, so that G = TFT and F = TGT

5.1.4 Basis Functions And Basis Images

The rows of the kernal matrix of a unitary transform are a set of basis in N -dimensional vector space. TT * I Normally the entire set is derived from the same basic function form. The inverse two-dimensional transform can be viewed as reconstructing the image by summing a set of properly weighted basis images. F x, y ' u , v, x, y G u , v u 0 v 0 N 1 N 1

Each element in the transform matrix, G, is the coefficient by which the corresponding basis image is multiplied in the summation.

Each basis matrix is characterized by a horizontal and a vertical spatial frequency. The matrices shown here are arranged left to right and top to bottom in order of increasing frequencies.

5.2 Cosine Transform 5.2.1 One dimensional Discrete Cosine TransformAs we know, when f(x) is an even function , Fourier transform is only real. How about the Fourier transform if f(x) is not.

设一维离散序列f x , x 0,1, 2,

, N 1,以 1 2为中心反折,形成

N 至 1的序列, 与原序列合并形成2 N的偶序列。此时傅立叶变 换的核函数为e j 2 ux N 改变为e cos 2 x 1 u 2N 这时的变换就叫余弦变换 1 j 2 x u 2 N 2

按傅立叶变换性质, 虚部为0不进行运算, 核函数等价于

因此余弦正变换:F u f x cos 2 x 1 u 2N x 0 为保证每行正交向量模=1,对上式进行归一化处理,N 1

F Cf 1 1 1 f 0 F 0 1 2 4 6 F 1 8 8 8 8 8 8 8 f 1 real ( e ) real ( e ) real ( e ) real ( e ) f 2 F 2 F 3 f 3

F u a u f x cos 2 x 1 u 2N x 0N 1

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证数字图像处理-第五章3 (2)全文阅读和word下载服务。

数字图像处理-第五章3 (2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1207237.html(转载请注明文章来源)

相关推荐:

热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top