第一范文网 - 专业文章范例文档资料分享平台

初三数学几何的动点问题专题练习(2)

来源:用户分享 时间:2022-05-06 本文由控制吥住の情绪 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.

10 4.

5.解:(1)1,8

5

11 (2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC

,4BC ==, 得

45QF t =.∴4

5

QF t =. ∴14(3)25

S t t =-?, 即22655

S t t =-+.

(3)能.

①当DE ∥QB 时,如图4.

∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB

=

, 即335t t -=

. 解得9

8

t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.

此时∠APQ =90°. 由△AQP ∽△ABC ,得

AQ AP

AB AC

=

, 即353t t -=. 解得158

t =.

(4)52t =

或45

14

t =. ①点P 由C 向A 运动,DE 经过点C .

连接QC ,作QG ⊥BC 于点G ,如图6.

PC t =,222QC QG CG =+2234

[(5)][4(5)]55

t t =-+--.

由2

2

PC QC =,得2

2234

[(5)][4(5)]55

t t t =-+--,解得52t =.

②点P 由A 向C 运动,DE 经过点C ,如图7. 22234

(6)[(5)][4(5)]55t t t -=-+--,4514

t =】

6.解(1)①30,1;②60,1.5;

(2)当∠α=900

时,四边形EDBC 是菱形. ∵∠α=∠ACB=900

,∴BC //ED .

∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900

,∠B =600

,BC =2,

∴∠A =300.

∴AB =4,AC 图4

P

图5

12 ∴AO =12

AC

……………………8分 在Rt △AOD 中,∠A =300,∴AD =2.

∴BD =2.

∴BD =BC .

又∵四边形EDBC 是平行四边形,

∴四边形EDBC 是菱形 ……………………10分

7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK

是矩形

∴3KH AD ==. ················································································ 1分 在Rt ABK △中,sin 4542

AK AB =?== .

cos 454BK AB =?== ·························································· 2分 在Rt CDH △

中,由勾股定理得,3HC

∴43310BC BK KH HC =++=++= ················································· 3分

(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥

∴MN DG ∥

∴3BG AD ==

∴1037GC =-= ············································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,.

∵DG MN ∥

∴NMC DGC =∠∠

又C C =∠∠

∴MNC GDC △∽△ ∴

CN CM CD CG

= ··················································································· 5分 即10257

t t -= 解得,5017t = ···················································································· 6分 (图①) A D C B K H (图②) A D C B G M N

13 (3)分三种情况讨论:

①当NC MC =时,如图③,即102t t =- ∴103

t = ·························································································· 7分

②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:

由等腰三角形三线合一性质得()11

102522

EC MC t t ==-=- 在Rt CEN △中,5cos EC t

c NC t -== 又在Rt DHC △中,3

cos 5

CH c CD =

= ∴53

5

t t -= 解得25

8

t = ······················································································· 8分

解法二:

∵90C C DHC NEC =∠=∠=?∠∠, ∴NEC DHC △∽△

NC EC

DC HC = 即553t t -= ∴258

t = ·························································································· 8分

③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.11

22

FC NC t ==

解法一:(方法同②中解法一)

1

3

2cos 1025t

FC C MC t ===-

解得60

17

t =

解法二:

∵90C C MFC DHC =∠=∠=?∠∠, ∴MFC DHC △∽△ ∴

FC MC

HC DC

= A

D

C

B M

N

(图③)

(图④)

A

D C

B

M N

H E

(图⑤)

A D

C

B

H N M

F

14 即1102235

t t -= ∴6017

t = 综上所述,当103

t =、258t =或6017t =时,MNC △为等腰三角形 ··············· 9分 8.解(1)如图1,过点E 作EG BC ⊥于点G . ··················· 1分

∵E 为AB 的中点, ∴122BE AB ==. 在Rt EBG △中,60B =?∠,∴30BEG =?∠. ············ 2分

∴112BG BE EG ====, 即点E 到BC

····································· 3分

(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.

∵PM EF EG EF ⊥⊥,,∴PM EG ∥.

∵EF BC ∥,∴EP GM =

,PM EG ==

同理4MN AB ==. ·················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,

∴6030NMC B PMH ==?=?∠∠,∠.

∴12PH PM == ∴3cos302MH PM =?= . 则35422

NH MN MH =-=-=. 在Rt PNH △

中,PN == ∴PMN △的周长

=4PM PN MN ++. ······································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.

当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =. 类似①,32

MR =

. ∴23MN MR ==. ··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.

此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分 图1 A D E B F C G

图2 A D E B F C

P N H

15 当MP MN =时,如图4

,这时MC MN MP ===

此时,615x EP GM ===-=

当NP NM =时,如图5,30NPM PMN ==?∠∠.

则120PMN =?∠,又60MNC =?∠, ∴180PNM MNC +=?∠∠.

因此点P 与F 重合,PMC △为直角三角形.

∴tan 301MC PM =?= .

此时,6114x EP GM ===--=.

综上所述,当2x =或4

或(5-时,PMN △为等腰三角形. ···················· 10分 9解:(1)Q (1,0) ····················································································· 1分 点P 运动速度每秒钟1个单位长度.································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.

在Rt △AFB

中,10AB 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=?= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.

∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴

AP AM MP AB AF BF ==. 1068

t A M M P

∴==

. ∴3455AM t PM t ==,. ∴34

10,55

PN OM t ON PM t ==-==.

设△OPQ 的面积为S (平方单位)

∴213473

(10)(1)5251010

S t t t t =?-+=+-(0≤t ≤10) ················································· 5分

说明:未注明自变量的取值范围不扣分.

∵3

10a =-

<0 ∴当474710

362()10

t =-=

?-时, △OPQ 的面积最大. ························· 6分 图3

A D E B

F

C

P

N M 图4

A D E

B

F C

P

M N 图5

A D E

B

F (P )

C

M

N G

G

R

G

16 此时P 的坐标为(9415,5310

) . ····································································· 7分 (4) 当 53t =或29513

t =时, OP 与PQ 相等. ················································· 9分

10.解:(1)正确. ················································· (1分)

证明:在AB 上取一点M ,使AM EC =,连接ME . (2分) BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,

45DCF ∴∠=°, 135ECF ∴∠=°.

AME ECF ∴∠=∠.

90AEB BAE ∠+∠= °,90AEB CEF ∠+∠=°,

∴BAE CEF ∠=∠.

AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分)

(2)正确. ····················································· (7分)

证明:在BA 的延长线上取一点N .

使AN CE =,连接NE . ··································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°.

四边形ABCD 是正方形,

AD BE ∴∥. DAE BEA ∴∠=∠.

NAE CEF ∴∠=∠.

ANE ECF ∴△≌△(ASA ). ································································· (10分) AE EF ∴=. (11分)

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证初三数学几何的动点问题专题练习(2)全文阅读和word下载服务。

初三数学几何的动点问题专题练习(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1421429.html(转载请注明文章来源)

相关推荐:

热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top