3.8×10焦的能量,其中到达地球表面的太阳能只有1.7×10焦,但仍有大量的太阳能还没有被利用。近年来发明的太阳灶、太阳能热水器、太阳能电池等对太阳能的直接利用还刚刚开始。这里还有很大的潜力可挖。此外自然界还存在大量的潮汐能和地热能,我国和有的国家已试验用潮汐能和地热能来发电,由
3
于有些技术问题还没有解决,使造价过高,因此还没有被广泛采用。另外本世纪初还发现了原子核能(原子能),原子能已经作为核潜艇、航空母舰和破冰船的核动力,也广泛地用于核电站。
我们把化石燃料、水流能、风能等人类早就应用的能源叫做常规能源。 把核能、太阳能、地热能、潮汐能等新近才开始利用的能源叫做新能源。
解决能源问题的主要出路(所有数据老师把握,整个新能源的得出由学生分组讨论得到) 教师:开发和利用新能源是人类解决能源问题的主要出路。我国虽然蕴藏着丰富的煤炭资源,新油田也在不断被发现,但是我国人口众多,能耗巨大,节约常规能源的消耗,开发和利用新能源仍是我国的一项重要任务。
参考数据:全球再生能源可转换成为二次能源的储能为185.55亿t标准煤,约为目前全球化石燃料消耗量的两倍,说明再生能源大有可为。但是,除水能基本得到充分利用外(发达国家利用率90%,中国10%),很多再生能源有待开发。有资料表明,美国到2030年再生能源在总利用能源中比重可达30%,英国到2020年再生能源占总开发电量的20%,但是不少人对此并不太乐观。对中国来说,首要的是开发水力资源和生物质能,其次是发展地热能、风能和太阳能。太阳能和风能的利用存在较大的新材料问题。
(1).核能
核能是康价的清洁能源,核电占世界电能的17%,已建核电装置400余座。但是由于核电站的安全与废料处理问题,目前核电发展缓慢。尽管如此,核电装置的改进仍在不断地进行,其中有不少材料问题,现仅就正在开发的两类核电装置分述如下。
快中子增殖堆:现行裂变反应堆所用燃料都是235U,而铀矿中235U含量只有0.7%,98%以上是238U。快中子增殖堆就是将238U吸收一个中子转变为239Pu,以此为燃料可使铀的利用率达70%。1200MW的快堆在法国己运行多年,但这种堆型存在一个严重的材料问题,即液体钠的腐蚀,以致造成了多次泄漏事故。同时,半衰期很长的239Pu,也可造成严重污染。最近提出的“加速器驱动的核反应堆”设想,就是利用擅变原理使239Pu,自循环,从而解决污染问题,我国在这方面正开展基础研究工作。
可视为永久能源的聚变堆:两个轻原子融合成重原子叫核聚变,它比核裂变产生的能量更大。氖和氟是氢的同位素,它们在一定条件下发生聚变反应,释放能量。海水中氛含量为0.034g/kg,全球海水中氖含量多达l0Ut,而每克氖相当100L汽油,所以说一旦聚变堆开发成功,将成为永久能源.聚变反应的点
8-10
火温度高达5×10℃,在2×10秒内注入100万J的能量。目前欧美都己点火成功,但距商业化很远,要在2050年或更长的时间才有可能。我国也有两台实验装置,用以探索物理原理,也可做一些材料研究。核聚变装置对材料要求十分苛刻,如耐中子辐射、耐高温和抗氢脆等。因此,材料是聚变堆能否实用化的关键因素。
(2).太阳能(在有太阳光的地方展示太阳能电池板收集太阳能可以带动小电风扇旋转)
太阳照射到地面的能量相当于全球能耗(1.1×10kW)的1.6万倍,既无污染,又是永久性能源。可
2
惜太阳辐射到地球的能量密度太低,只有1kW/m,,还受气候影响。太阳能的利用形式主要有两种:-是热能的直接利用,如利用镜面或反射槽将太阳光聚焦在收集器上,由中间介质吸热产生蒸汽,推动气轮机组发电,美国单台容量己达80MW;另一种形式是利用小型太阳能装置为房屋采暖供热,现己大量应用。
10
4
研制高效、长寿、廉价的光伏转换材料已成为目前能源新材料领域的重要课题。当前不同材料的最高转换效率为\'非晶硅(薄膜,可铺覆)为12.7%,理论上可达24%,缺点是稳定性较差;多晶硅为17.7%,-种复杂结构的多晶硅太阳能电池可达24.4%;单晶硅为28.7%,CdTe或Cds为13%;Cu(Ga,In)Te为17%,GaAs及GaInp可高达25%-30%。目前,太阳能电池组价格为每峰瓦4-5美元,估计要达到0.4美元左右才能在电价方面与常规发电相当。近年来正在研制便于大规模制造的燃料纳米半导体材料及有机光伏转换薄膜。
尽管如此,在某些日照时间长、居民分散地区建立太阳能电站还是有意义的,因此发达国家都在积极开发太阳能,如美国百万屋顶计划,德国十万屋顶计划及日本个屋顶太阳能电池系统等。我国对西部地区的开发应把太阳能的利用列为重点,因为西部地区日照好、居民分散,适合发展太阳能。20世纪70年代美国有一个异想天开的计划,就是在同步人造卫星上装两个16km2的电池板和聚光系统,将所获电能用微波传到地面。由于在大气层外阳光强度比地面高1.4倍,又不受气候影响,据估计,由此得到的电能成本可与常规电能相比。但是,除了材料和技术问题以外,是否造成环境污染还需要论证。
(3).风力发电
太阳能在地面上约2%转变为风能,全球风力用于发电功率可达11.3万亿kW,很有发展前景。风能与风速密切相关,我国沿海与西北地区的风力资源丰富,大有作为,但风车材料是关键。-个2.5MW的风车,转子叶片直径要80m,包括传动箱的总重达30t;风车高近百米,用材几百吨。风车叶片耍有足够的
9
强度和抗疲劳性能(全寿命转数要求10以上),目前主要采用玻璃钢或碳纤维增强塑料,正向增强木材发展。虽然风能发电装置造价较高(1000美元/kW),但电价可与常规能源相比具有较强的可操作性。
(4).氢能
氢被认为是理想能源,热值高、无污染。但是氢作为能源,存在两个问题,一是氢的来源,只能通过电解水,太阳能分解水,生物制氢,以及化工、冶金等流程制氢,这就需要消耗能源;二是氢在存储、运输及应用过程中容易发生爆炸,加」氢对材料产生氢脆、氢腐蚀,以及氢渗漏等,所以近年来对储氢材料的研究很多。-种储氢方式是将材料与氢结禽成为氢化物,需要时加热放氢,放完后还可继续充氢。同时储氢材料又是高能蓄电池的负极。储氢材料都是金属间化合物。这些金属间化合物比重大,并有中毒问题,限制了其应用并且成本很高。目前正在研究的纳米碳管,其储氢能力数倍于LaNi5受到广泛关注。国内外一些厂家利用上述储氢合金制造氢能汽车,但由于有些技术问题有待解决,价格又无竞争能力,离产业化尚远。
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育高中物理《能源的开发与利用》教案教科版讲义(2)全文阅读和word下载服务。
相关推荐: