第一范文网 - 专业文章范例文档资料分享平台

The Royal Swedish Academy of Sciences(22)

来源:用户分享 时间:2021-06-02 本文由红薇染露 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

Image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. This unary type constructor [A] has turned up previously in a syntactic form as a way of erasing computational content,

Theouterrectangleandthelowersquareareobviouslypullbacks,hencetheuppersquareisaswell.

Wecanexpresstheregularepi–monofactorizationofanarrowx:A t:Bas

At

DDDDqDDBzzzzzzm

Im(t)

with

Im(t)

m

e=== y:B[x:AEqA(t,y)]z:Im(t) π1(z):Bx:A t,[ x,r(t) ] :Im(t).

4PropertiesofBracketTypes

Asaconsequenceofthecompletesemanticsoftheprevioussectionwecanprovefactsaboutbrackettypesbyarguinginageneralregularcategory.Thusweidentifytypeswithobjectsandtermsincontextswitharrows.Weusethistechniqueinthepresentsectiontoestablishsomeofthebasicpropertiesofbrackettypes.

Firstobservethat,inanycontextΓ,thetypessatisfyingproofirrele-vance(1),areexactlythecartesianidempotents:

Pprop P=P×ΓP(8)

wherehereandinwhatfollows,=betweentypesmeansthattheyarecanon-icallyisomorphic.Forexample,in(8)thecanonicalisomorphismsarethediagonalandtheprojection.IfPandQarepropositionsinthecontextΓthenthecorrespondingdisplaymaps(Γ,P)→(Γ)and(Γ,Q)→(Γ)aremonos,sothatwecanthinkofPandQassubobjectsofΓ.Inparticular,wecanwriteP≤Qwhenthereexistsa(necessarilyunique)arrowP→QinthesliceoverΓ.

Proposition4.1ForanytypesA,BinacontextΓ:

1.[ ]isfunctorial

2.ThereisacanonicalarrowA→[A],naturalinA

3.[[A]]=[A]

4.A=[A] A=A×ΓA

17

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科The Royal Swedish Academy of Sciences(22)全文阅读和word下载服务。

The Royal Swedish Academy of Sciences(22).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1193519.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top