Image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. This unary type constructor [A] has turned up previously in a syntactic form as a way of erasing computational content,
thatcoequalizesthekernelpair,whichmeansthat
z:C,v:D,w:D t{v/u}=t{w/u}:B
Thenwecanformthefactorizationoftthrough[u]asthewhereterm
z:C,y:[D] twhere[u]=y:B
Thesituationisdepictedinthefollowingdiagram:
(z:C,v:D,w:D) z,v
z,w (z:C,u:D)NNNNNNNN z,[u] NNNt
(C,y:[D])(B)ttttttt(tttwhere[u]=y)
Thetrianglecommutesbecause
twhere[u]=[u]=t
bytheβ-ruleforbrackettypes.Thefactorizationisunique,because[ ]isepic,stly,letusshowthatinSregularepisarestableunderpullbacks.SinceeveryarrowinSisisomorphictooneoftheform(5),everykernelpairisisomorphictooneoftheform(6)andsoeveryregularepiisisomorphictooneoftheform(7).Letusthencompute,withoutlossofgenerality,apullbackofsuchacoequalizeralonganarrowoftheform(5):
(y:B,z:C,u:D)_
y,z,[u] z,u (z:C,u:D) z,[u]
(y:B,z:C,v:[D]) z,v (C,[D])
Itisevidentthattheleft-handarrowisaregularepi,becauseitisoftheform(7).Itisalsoclearthatthediagramcommutes.Toseethatitisapull-back,observethatitappearsastheupperhalfofthefollowingcommutativediagram:
(y:B,z:C,u:D) y,z,[u] z,u (z:C,u:D) z,[u]
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科The Royal Swedish Academy of Sciences(20)全文阅读和word下载服务。
相关推荐: