Image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. This unary type constructor [A] has turned up previously in a syntactic form as a way of erasing computational content,
andfromthatthefactorizationofhthroughtheequalizer:
z:C h,r(s{h/x}) :x:AEqB(s,t)
Thisarrowisuniquebecauseanytwotermsofa(strongextensional)Eqtypeareequal.Therefore,Shasall nitelimits.
ItremainstoshowthatShasstablecoequalizersofkernelpairs.Beforeproceedingwith theproof,letusspellouttheinterpretationofdependenttypeswith1,andEqinS.
Dependentcontextsareinterpretedbynesteddependentsums
[[1]]=1 [[x1:A1,...,xn:An]]=x1:A1x2:A2···xn 1:An 1An
Inordertokeepthenotationsimplewedenotesuchanestedsumby(A1,...,An).Atypeinacontext,Γ Atype,isinterpretedbyasuit-abledisplaymap
(Γ,A)
Γ A
(Γ)
Moreprecisely,ifΓisy1:B1,...,yn:Bn,thenthedisplaymapΓ Aistheterm
n 1p:(B1,...,Bn,A) π1(p),π1(π2(p)),...,π1(π2(p)) :(B1,...,Bn).Withthisnotation,wegetagoodmatchbetweenthesyntaxofdependenttypesandtheirinterpretationinS.Forexample,adependentsuminadependentcontext
Γ,x:A BtypeΓ x:AB
isinterpretedessentially“byitself”asthearrow
(Γ, x:AB)Γ x:AB(Γ)
Similarly,anequalitytypeinadependentcontextisinterpretedessentiallybyitself,exceptthatwemustformthenesteddependentsumsinordertointerpretthedependentcontextinwhichthetypeisplaced.
Consideranarrowx:A t:BinS.Wecanformthedependenttype
y:B x:AEqB(t,y)type
14
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科The Royal Swedish Academy of Sciences(18)全文阅读和word下载服务。
相关推荐: