Image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. This unary type constructor [A] has turned up previously in a syntactic form as a way of erasing computational content,
5.1=[1]
6.[A×ΓB]=[A]×Γ[B]
Moreover,(1)–(4)characterize[ ]uniquelyamongstablefunctorsonregularcategories.
Proof.Theactionof[ ]onanarrowx:A t:Bisthebottomarrowinthefollowingdiagram
x:A
[ ]tB[ ]
u:[A][t]where[x]=u[B]Theactionofthefunctor[ ]onthearrowtisnottobeconfusedwiththearrowt [ ]=[t]:A→[B],whichdoesnotevenhavethecorrectdomain.
Therestofthepropositionisprovedeasily.Bywayofexample,weprovethat[[A]]=[A].InthediagramΓ{{{{{{{{{{[[A]][A]A
thearrow[A]→[[A]]istheregularepipartofanimagefactorizationofthemono[A]→Γ,thereforeitisanisomorphism.
Letusseehowtheadjunction(2)isvalidated,foranytypeAandapropositionP,bywhichwemeanthatPsatis es(8):givenanyarrow(term)A→P,weapplythefunctor[ ]togetauniqueone[A]→[P],but
[P]=PsincePisaproposition.Conversely,given[A]→P,weprecomposewithA→[A]togetA→ P. Toseehow[ ]andinteract,considerthetypes[B]and[AA[B]] inacontextΓ,obtainedbyapplyingtheand[ ]formationrulesintwo
18
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科The Royal Swedish Academy of Sciences(23)全文阅读和word下载服务。
相关推荐: