2019-2020年高考数学一轮总复习第五章数列 5.4数列求和课时跟踪检测 1.已知数列{an}是等差数列,a1 = tan225 °
a5= 13a1,设 Sn 为数列{( — 1) nan}的前 n
项和,贝V S2 014 =(
A. 2 015 C. 3 021
B. —2 015 D. —3 022
解析:由题知 a1 = tan(180 ° + 45 )=1, . a5= 13
a5 — a1
d
=苛4
--an = 1 + 3( n — 1) = 3n — 2.
设 bn= ( — 1)nan= ( — 1)n(3 n— 2),
Sa 014 = ( — 1 + 4) + ( — 7+ 10) +…+ ( — 6 037 + 6 040) = 3X 1 007 = 3 021.故选 C. 答案:C
2?设{an}是公差不为零的等差数列, a2= 2, 且a1, a3, a9成等比数列,则数列{an}的前
n2 7n
A. 4 + 7 C. — + 4 4
解析:设等差数列{an}的公差为d,则 由 ai= aa9得(a2 + d) 2= (aa— d)( a2 + 7d), 代入a2= 2,解得d= 1或d= 0(舍).
2
n2 3n B. 2 +空
D.
n 3n
n n
+ _ 2 2
2
.an = 2+ ( n — 2) x 1 = n,
一 2
a1 + an n 1 + n n n n = = — +
..Si =
故选D. 答案:D
3. 等比数列{a,}的前n项和为Sn,已知
a2as= 2a1,且&与2a?的等差中项为寸,贝U S5 =
A. 29 C. 33
B. 31 D. 36
解析:设等比数列{an}的公比为q
则 a1q3 = 2a,①
aq3+ 2aiq6= 5,②
1
解得 ai= 16, q= 2,
31,故选B.
答案:B
4. 已知等比数列{an}的各项均为正数, {bn}的前 n 项和为 Sn,a3+ 8.= 27, q= f2.
(1)求{an}与{bn}的通项公式;
ai= 1,公比为q;等差数列{ bn}中,bi = 3,且
⑵设数列{Cn}满足6= 28,求{Cn}的前门项和Tn.
解:(1)设数列{bn}的公差为d, ?/ a3 + S3 = 27, q = S2,
2
q + 3d= 18,
…
2
求得q= 3, d= 3,
6+ d= q2.
an = 3 1, bn = 3n.
n 3 + 3n
3
3 2
1
1
1
⑵由题意得 S=
11111
/. Tn = 1 — 一+—
2 2 3 3 4
2
, Cn= 2Sn = 2x 3x n n+ 1 = n—市 1 1
1 n
= 1 — =
n+1 n+1
.
n n+1
5. (xx届广州综合测试)已知数列{an}是等比数列,a2= 4, a3+ 2是a2和a4的等差中项. (1) 求数列{an}的通项公式;
(2) 设 bn = 2log 2an— 1 ,求数列{ anbn}的前 n 项和 Tn.
解:(1)设数列{an}的公比为q, 因为 a2= 4,所以 a3= 4q, a = 4q2. 因为a3 + 2是a2和a4的等差中项,
所以 2( a3+ 2) = a2 + a4, 化简得q2— 2q= 0. 因为公比qz0,所以q=2.
所以 an= a2q 2= 4X2 2 = 2(n€ N).
⑵ 因为 an = 2,所以 bn= 2log 2an— 1 = 2n — 1,
所以 anbn = (2 n— 1)2n,
则 Tn= 1 x 2+ 3X 2 2+ 5X 2 3+???+ (2n — 3)2 n「1 + (2n— 1)2:① 2Tn= 1 X 2 2+ 3X 2 3 + 5X 2 4+…+ (2 n— 3)2n + (2 n— 1)?2 “1.② 由①一②得,
—Tn = 2 + 2X 2 + 2X 2 +???+ 2X2 — (2 n—
2
3
n
n+1
1)2
=2 + 2X -
4 1 — 2n1
—
(2 n— 1)2
n+ 1
n+ 1
=—6— (2n— 3)2 ,
+
所以 Tn= 6+ (2n — 3)2 n1.
6. S为数列{an}的前n项和,已知an>0, an+ 2an= 4S + 3. (1)求{an}的通项公式;
1
⑵设bn =
,求数列{bn}的前n项和.
anan + 1
解:(1)由 an+ 2an = 4Sn+ 3,① 可知 an+1 + 2an+1= 4S+1 + 3.②
②—①,得 an + 1 — an+ 2( 31 +1 — an) = 4an + 1 ,
2 2
即 2( an+ 1 + an) = an + 1 — = ( an+ 1 + an)( an+ 1 — an). 由 an>0, 得 an+1 — an= 2.
又 a1+ 2a1 = 4a1+ 3,解得 a1=— 1(舍去)或 a1= 3. 所以{an}是首项为3,公差为2的等差数列, 通项公式为an = 2n+ 1. (2)由 an = 2n+ 1 可知
(
1 1 1 1 1
—
——
bn —
anan+1 2n +1 2n+ 3 2 2n+ 1 2n + 3
设数列{ bn}的前n项和为Tn,贝U
Tn= b 1 + b+…+ bn
111 11 1 1
— —— — + - —— — +…+ ——
235 5 7 2n+ 1 2n + 3
n
3 2n+ 3
7 .已知数列{an}与{bn}满足 &+1 — an= 2( bn+1 — bn)( n € N ). (1) 若a1 — 1, bn= 3n+ 5,求数列{an}的通项公式;
n
*
n
*
(2) 若a1 — 6, bn = 2(n€ N)且 入an>2 + n+ 2入 对一切n€ N恒成立, 求实数 入的取值 范围.
解:(1)因为 an+1 — an= 2(bn+1— bn), bn — 3n + 5, 所以 an+1 — an= 2( bn+1 — bn) — 2(3 n +
相关推荐: