We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
whichcoincideswiththeevolutionequation(11).Asforthevelocity-divergencePDFPL(θ;t),weconsistentlyrecovertheevolutionequation(12)withahelpofequation(20):
1 δDθ+ tdt 1dfdδDθ+=dpiPI(p)H(1+f) θdti = PL(θ;t).(24)dtθ
TheapproximatesolutionoftheEulerianone-pointPDFsarealsoobtainedsimilarly,butthefactor1/(1+δ)mustbeconvolvedwiththeLagrangianPDFduetothepresenceofinertialterm(r.h.sofeqs.[17][18]):
PE(δ;t)=1
δDθ+1
dt 1+f(p,t).(26)
Note,however,thatthesePDFsdonotsatisfythefollowingconditions:normalizationcon-dition 1 E=1andzeromeans δ E=0and θ E=0.Thisfactsimplyre ectsthatthe
conservationofEulerianvolumecannotbealwaysguaranteed,incontrasttotheconserva-tionofLagrangianvolumeensuredbythemassconservation.AspointedoutbyFosalba&Gazta naga(1998a)(seealsoProtogeros&Scherrer1997),were-scaletherelationbetweenδandf(p,t)asfollows:
PI(p)δ=g(p,t)≡NE{1+f(p,t)} 1;NE(t)≡dpi
i
dt
dt =δ1PE(δ;t)1 idpiPI(p)dhdg=
θ1+g
dg
H(1+g)
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证Evolution of Cosmological Density Distribution Function from the Local Collapse Model(10)全文阅读和word下载服务。
相关推荐: