We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
ofcontinuity,theEulerequationandthePoissonequationasfollows:
δ
a
v
a ·{(1+δ)v}=0,1(1)(v· )v+Hv=
xj (x,t),···,(4)
andde nethejointPDF,P(F;t),whichgivesaprobabilitydensitythatthequantityFtakessomevaluesof(δ,v, δ,···)atthetimet.Intermsofthis,theone-pointPDFofthedensity uctuationsP(δ;t)isgivenas
dFiP(F;t),(5)P(δ;t)=
Fi=δ
andsimilarlytheone-pointPDFofthedimensionlessvelocitydivergence,P(θ;t),is
P(θ;t)=dFiP(F;t),
Fi=θ(6)
whereθ≡ ·v/(aH).
Ingeneral,astatisticalcharacterizationofthelarge-scalestructureiscoordinate-dependent.Physically,thereareatleasttwomeaningfulcoordinates,i.e.,theLagrangianandtheEule-riancoordinates.WhiletheEuleriancoordinateis xedonacomovingframe,theLagrangiancoordinateis xedon uidparticlesandfollowsthemotionofthe uid ow.Hence,astimegoeson,highdensityregionsintheLagrangianspaceoccupylargervolumethanthoseintheEulerianspace.WethusconsiderboththeLagrangianPDFPLandtheEulerianPDF
PE,de nedintheLagrangianandtheEuleriancoordinates,qandx,respectively.The
correspondingexpectationvalues, ··· Land ··· Earealsointroduced.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证Evolution of Cosmological Density Distribution Function from the Local Collapse Model(5)全文阅读和word下载服务。
相关推荐: