第一范文网 - 专业文章范例文档资料分享平台

《测控仪器设计(第2版)》课后习题答案_浦昭邦_王宝光(14)

来源:用户分享 时间:2021-04-06 本文由我叫很个性 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

6)系统响应速度要快,便于控制。

(二)精密微动工作台设计中的几个问题

(1)导轨形式的选择 在微动工作台微位移范围内,要求工作台有较高的位移分辨率,又要求响应特性好。因此要求导轨副导向精度高。

▼滑动摩擦导轨摩擦力不是常数,动、静摩擦系数差较大,有爬行现象,运动均匀性不好。

▼滚动摩擦导轨虽然摩擦力较小,但由于滚动体的尺寸一致性误差、滚动体与导轨的形状误差会使滚动体与导轨面间产生相对滑动,使摩擦力在较大范围内变动,即动、静摩擦力也有一定差别,也有爬行现象产生,但运动灵活性好于滑动导轨。

▼弹性导轨,包括平行片簧导轨和柔性支承导轨,它们无机械摩擦,无磨损,动、静摩擦系数差很小,几乎无爬行,又无间隙,不发热,可达到很高的分辨率,是高精度微动工作台常用的导轨形式,但它们行程小,只适合用于微位移。

▼空气静压导轨,这种导轨导向精度高,无机械摩擦、无磨损、无爬行,又具有减震作用,但成本较高。

▼在要求既要大行程,又要高精度微位移情况下,可采用粗、细位移相结合的方法。大行程时用步进电动机以机械减速机构推动工作台在空气静压导轨上运动,而微位移时用压电器件推动工作台以弹性导轨导向运动。

(2)微动工作台的驱动 微工作台的驱动可采用如下方法:

▼电机驱动与机械位移缩小装置(杠杆传动、齿轮传动、丝杠传动、楔块传动、摩擦传动)相结合,这是一种常规方法,但结构复杂、体积大、定位精度低于0.1μm。适于大行程,中等精度微位移场合。 ▼电热式和电磁式机构较简单,但伴随发热,易受电磁干扰,难以达到高精度,一般为0.1μm左右,行程较大,可达数百微米。

▼压电和电致伸缩器驱动不存在发热问题,稳定性和重复性都很好,分辨力可达纳米级,驱动工作台的定位精度可达0.01μm。但行程小,一般为几十微米。

(3)微动工作台的控制 微动工作台的控制有开环控制和闭环控制,并配有适当的误差校正和速度校正系统。对于闭环控制还要有精密检测装置。用微机进行控制具有速度快、准确、灵活、便于实现精密微工作台与整机的统一控制等优点,是目前发展的主要方向。

一.压电及电致伸缩器件 压电器件和电致伸缩器件是近年来发展起来的新型微位移器件,它结构紧凑,体积小,位移分辨力高,控制简单,不发热,抗干扰性强,因而是理想的微位移器件,分辨力可达到0.001μm,定位精度可达到正负0.01μm

二.在微位移器件中压电及电致伸缩器是应用逆压电效应或电致伸缩效应工作的

压电微位移器件是用逆压电效应工作的,广泛用于激光稳频、精密微动及进给等。对压电器件要求其具有压电灵敏度高、行程大、线性好、稳定性好和重复性好等。

电磁驱动器是用电磁力来驱动微工作台。微工作台可用平行片簧导轨导向,也可用金属丝悬挂导向。原理见图4-96。通过改变电磁铁线圈的电流来控制电磁铁的吸引力,克服弹簧的作用力,达到控制工作台微位移的目的。电磁微驱动器方法简单,驱动范围大,但线圈通电流后易发热,易受电磁干扰。

简单说压电效应分正压电效应(顺压电效应)和逆压电效应(电致收缩效应)。前者是机械能转变为电能,后者是电能转变为机械能。

具体说:当某些物质沿其某一方向被施加压力或拉力时,会发生变形,此时这种材料的两个表面将产生符号相反的电荷;当去掉外力后,它又重新回到不带电状态,这种现象叫压电效应。有时,也把这种机械能转变为电能的现象称为正压电效应或顺压电效应。反之,在某些物质的极化方向上施加电场,它会产生机械变形,当去掉外加电场后,该物质的变形随之消失,这种电能转变为机械能的现象,称为逆压电效应或电致收缩效应。

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证《测控仪器设计(第2版)》课后习题答案_浦昭邦_王宝光(14)全文阅读和word下载服务。

《测控仪器设计(第2版)》课后习题答案_浦昭邦_王宝光(14).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1185615.html(转载请注明文章来源)

相关推荐:

热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top