需求规格说明书(老系统)
实验一 离散时间信号分析
一、实验目的
1.掌握各种常用的序列,理解其数学表达式和波形表示。
2.掌握在计算机中生成及绘制数字信号波形的方法。
3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。
4.掌握线性卷积软件实现的方法。
5.掌握计算机的使用方法和常用系统软件及应用软件的使用。
6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。
二、实验原理
1.序列的基本概念
离散时间信号在数学上可用时间序列{x(n)}来表示,其中x(n)代表序列的第n个数字,n代表时间的序列,n的取值范围为 n 的整数,n取其它值x(n)没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号xa(t)进行等间隔采样,采样间
隔为T,得到{xa(nT)}一个有序的数字序列就是离散时间信号,简称序列。
2.常用序列
常用序列有:单位脉冲序列(单位抽样) (n)、单位阶跃序列u(n)、矩形序列RN(n)、实指数序列、复指数序列、正弦型序列等。
3.序列的基本运算
序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。
4.序列的卷积运算
y(n) x(m)h(n m)
m x(n) h(n)
上式的运算关系称为卷积运算,式中 代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。
(1)反褶:先将x(n)和h(n)的变量n换成m,变成x(m)和h(m),再将h(m)以纵轴为对称轴反褶成h( m)。
(2)移位:将h( m)移位n,得h(n m)。当n为正数时,右移n位;当n为负数时,左移n位。
(3)相乘:将h(n m)和x(m)的对应点值相乘。
(4)求和:将以上所有对应点的乘积累加起来,即得y(n)。
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新资格考试认证实验一序列`卷积运算全文阅读和word下载服务。
相关推荐: