数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练
例如,已知1111 ,(abc 0,a b c 0), abca b c
求证a、b、c三数中必有两个互为相反数。
恰当的转化使问题变得熟悉、简单。要证的结论,可以转化为:(a b)(b c)(c a) 0
思维变通性的对立面是思维的保守性,即思维定势。思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。
综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。要想提高思维变通性,必须作相应的思维训练。
二、思维训练实例
(1) 观察能力的训练
虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。
a,b,c,d例1 已知都是实数,求证
a2 b2 c2 d2 (a c)2 (b d)2.
思路分析 从题目的外表形式观察到,要证的
结论的右端与平面上两点间的距离公式很相似,而
左端可看作是点到原点的距离公式。根据其特点,
证明 不妨设A(a,b),B(c,d)如图1-2-1所示,
则AB (a c)2 (b d)2.
OA a2 b2,OB c2 d2, 在 OAB中,由三角形三边之间的关系知:
OB AB 当且仅当O在AB上时,等号成立。
因此,a2 b2 c2 d2 (a c)2 (b d)2.
思维障碍 很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。学生没能从外表形式上观察到它与平面上两点间距离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。因此,平时应多注意数学公式、定理的运用练习。
例2 已知3x2 2y2 6x,试求x2 y2的最大值。
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高等教育高中数学解题思维策略 一数学思维的变通性(2)全文阅读和word下载服务。
相关推荐: