三角形的重心是三角形三条中线的交点。
三角形的三条中线必交于一点
已知:△ABC的两条中线AD、CF相交于点O,连结并延长BO,交AC于点E。
三角形的三条中线必交于一点
求证:AE=CE
证明:延长OE到点G,使OG=OB
∵OG=OB,∴点O是BG的中点 又∵点D是BC的中点∴OD是△BGC的一条中位线 ∴AD∥CG
∵点O是BG的中点,点F是AB的中点 ∴OF是△BGA的一条中位线 ∴CF∥AG
∵AD∥CG,CF∥AG,∴四边形AOCG是平行四边形 ∴AC、OG互相平分,∴AE=CE
三角形的重心的性质
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:
(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
6.重心是三角形内到三边距离之积最大的点。
编辑本段二、三角形的外心
三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。
三角形的三条垂直平分线必交于一点
三角形的三条垂直平分线必交于一点
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新外语学习三角形的心全文阅读和word下载服务。
相关推荐: