连接OD ,又因为O为外心,所以OD⊥BC。连接AH并延长交BC于E,因H为垂心,所以 AE⊥BC。所以OD//AE,有∠ODA=∠EAD。由于G为重心,则GA:GD=2:1。
连接CG并延长交BA于F,则可知F为AB中点。同理,OF//CM.所以有∠OFC=∠MCF
连接FD,有FD平行AC,且有DF:AC=1:2。FD平行AC,所以∠DFC=∠FCA,∠FDA=∠CAD,又∠OFC=∠MCF,∠ODA=∠EAD,相减可得
∠OFD=∠HCA,∠ODF=∠EAC,所以有△OFD∽△HCA,所以OD:HA=DF:AC=1:2;又GA:GD=2:1所以OD:HA=GA:GD=2:1
又∠ODA=∠EAD,所以△OGD∽△HGA。所以∠OGD=∠AGH,又连接AG并延长,所以∠AGH+∠DGH=180°,所以∠OGD+∠DGH=180°。即O、G、H三点共线。 欧拉线的证法3
设H,G,O,分别为△ABC的垂心、重心、外心. 则向量OH=向量OA+向量+OB+向量OC 向量OG=(向量OA+向量OB+向量OC)/3, 向量OG*3=向量OH 所以O、G、H三点共线
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新外语学习三角形的心(6)全文阅读和word下载服务。
相关推荐: