LARGERIEMANNIANMANIFOLDSWHICHAREFLEXIBLE933
7.KX ofweightedopencones
JohnRoe[20]hasintroducedthefollowingnotionofcoarsehomology:De nition7.1.IfXisacompletelocallycompactmetricspace,ase-quence{Ui}oflocally nitecoversofXbyrelativelycompactopensetsisˇcalledanAnti-CechsystemiftherearenumbersRi→∞suchthat
(i)diam(U)<RiforallU∈Ui.
(ii)RiisaLebesguenumberforUi.
ThecoarsehomologyofXwithcoe cientsinSis
lf(N(Ui);S),HX (X;S)=limH →
lf(P;S)istheSteenrodwhereN(Ui)isthenerveoftheopencoverUiandH S-homologyofthe1-pointcompacti cationofP,relin nity.S,ofcourse,is
aspectrum.
ˇItisnotdi culttoconstructanti-Cechsystemsofcovers,atleastwhenX
isacompletelocallycompactmetricspace.Forsome >0,chooseamaximalcollectionofdisjointopen ballsinXandconsiderthecollectionofR-ballsonthesamecenters.ForR>2 ,thisisacoverwithLebesguenumberatleastR 2 .If{Ri}isanymonotonesequenceapproachingin nity,thisallowsustoconstructasequenceofcoarsecovers{Ui}withdiameters<Ri.Anyˇanti-Cechsystemisco nal,soHX iswell-de ned.
Aninterestingquestioninmetrictopologyisto ndconditionsunderwhichHX (X;S)isequaltotheS-homologyofXatin nity.InsuchcasesHX isatopologicalinvariant,ratherthanametricinvariant.TheusualsortofnerveargumentgivesapropermapX→N(Ui)foreachiandthereforeamaplf(X;S)→HX (X;S).EvenwhenXisuniformlycontractible,theresultsH
ofthispapershowthatthismapneedbeneitheranintegralmonomorphismnoranintegralepimorphism.Wedo,however,havethefollowing:
Theorem7.2.IfXiscompactmetricandcXisaweightedconeonX,
lf(cX;S)→HX (cX;S)isanisomorphismforanyspectrumS.thenH
TheanalogousresulthasbeenprovenbyHigsonand/orRoeformanyuniformlycontractiblespaces.Wewillgiveaproofforweightedconeswhichincludesthein nite-dimensionalcase.
Proof.LetRbegivenandconsiderlevelskRintheweightedconecX.Packeachoftheselevelswith k-ballsoncentersckiasabove, ksmall,anddrawradialarcsfromeachckitothepointbelowitinlevel(k 1)R.Now
take(1+)R-neighborhoodsofthearcs.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育高等数学(15)全文阅读和word下载服务。
相关推荐: