922A.N.DRANISHNIKOV,STEVENC.FERRY,ANDSHMUELWEINBERGER
Lemma2.2.Let(X,d)beacompactmetricspacewhichislocallyk-connectedforallk.Foreachn,theopenconeonXhasacompleteuniformlyn-connectedmetric.WewilldenoteanysuchmetricspacebycX.1
Proof.Wewillevenproduceametricwhichhasalinearcontractionfunc-tion.Itsconstructionisbasedontheweightedconeoftenusedindi erentialgeometry.Drawtheconevertically,sothathorizontalslicesarecopiesofX.
Chooseacontinuousstrictlyincreasingfunctionφ:[0,∞)→[0,∞)withφ(0)=0.LetdbetheoriginalmetriconXandde neafunctionρ by(i)ρ ((x,t),(x ,t))=φ(t)d(x,x ).
(ii)ρ ((x,t),(x,t ))=|t t |.
Wethende neρ:OX×OX→[0,∞)tobe
ρ((x,t),(x,t))=inf
wherethesumisoverallchains
(x,t)=(x0,t0),(x1,t1),...,(x ,t )=(x ,t )
andeachsegmentiseitherhorizontalorvertical.Itpaystomovetowards0beforemovingintheX-direction,sochainsofshortestlengthhavetheformpicturedabove.ThefunctionρisametriconOX.ThenaturalprojectionOX→[0,∞)decreasesdistances,soCauchysequencesareboundedinthe
[0,∞)-direction.ItfollowsthatthemetriconOXiscomplete.WewritecXforthemetricspace(OX,ρ).
Itremainstode neφsothatcXisuniformlyn-contractible.Wewillde neφ(1)=1andφ(i+1)=Ni+1φ(i)fori∈Z,wherethesequence{Ni}willbespeci edbelow.Fornonintegralvaluesoft,weset
φ(t)=φ([t])+(t [t])φ([t]+1).
“c”notationincXreferstoaspeci cchoiceofweights.Thereprobablyshouldbean“n”inournotation,butweleaveitoutforsimplicity.1The i=1ρ ((xi,ti),(xi 1,ti 1))
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育高等数学(4)全文阅读和word下载服务。
相关推荐: