LARGERIEMANNIANMANIFOLDSWHICHAREFLEXIBLE923
SinceXislocallyn-connected,thereisanin nitedecreasingpositive
d(x) Bd(x) sequence{ri}suchthatforeveryxtheinclusions... Brrii+1dBri 1(x)arenullhomotopiconn-skeleta.Re nethesequencesothatactuallyd(x) BdinclusionsBirri 1(x)arenullhomotopiconn-skeleta.WesetNi=iri 1i.ρρ(x,i) cX.First,wenotethatB1(x,i) NowconsidertheballB1ρρd(x,i)B1(x)×[i 1,i+1]andthatB1(x,i)contractsinitselftoB1
∩(X×[i 1,i]) Bdi 1
ρρ(x,i)n-contractsinB3(x,i)bypushingdowntothe(i 2)-levelandsoB1performingthen-contractionthere.
Forballsofradius2thesamereasoningappliesifthecenterisatleast3awayfromthevertex.Wecontinueinthiswayandobservethatforanygivensizeball,centeredsu cientlyfarout,oneobtainsan-contractibilityfunctionoff(r)=r+2asrequired.Thewholespaceisthereforeuniformlycontractible.1i 1ρ(x)×[i 1,i].ButB3(x,i) Bd1i 2(x)×{i 2}
3.Designercompacta
De nition3.1.Amapf:M→Xfromaclosedmanifoldontoacompactmetricspaceiscell-likeorCEifforeachx∈XandneighborhoodUoff 1(x)thereisaneighborhoodVoff 1(x)inUsothatVcontractstoapointinU.
ThepurposeofthissectionistogiveexamplesofCEmapsf:M→Xsothatf :Hn(M;L(e))→Hn(X;L(e))hasnontrivialkernel.Theargumentgivenbelowisamodi cationofthe rstauthor’sconstructionofin nite-dimensionalcompactawith nitecohomologicaldimension.HereistheresultwhichwewilluseinprovingTheoremsA,B,andCoftheintroduction.
Theorem3.2.LetMnbea2-connectedn-manifold,n≥7,andlet (M;Zm).ThenthereisaCEmapq:M→XwithαbeanelementofKO (M;Zm)→KO (X;Zm)).Itfollowsthatifα∈H (M;L(e))α∈ker(q :KO
isanelementoforderm,modd,thenthereisaCEmapc:M→Xsothatc (α)=0inH (X;L(e)).
Webegintheproofofthistheorembyrecallingthestatementofamajorstepintheconstructionofin nite-dimensionalcompactawith nitecohomo-logicaldimension.
(K(Z,n))=0forsomegeneralizedho-Theorem3.3.Supposethath (L)mologytheoryh .Thenforany nitepolyhedronLandanyelementα∈h
thereexistacompactumYandamapf:Y→Lsothat
(1)c-dimZY≤n.
(2)α∈Im(f ).
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育高等数学(5)全文阅读和word下载服务。
相关推荐: