920A.N.DRANISHNIKOV,STEVENC.FERRY,ANDSHMUELWEINBERGER
jecturewasdisproved[17].InthispaperwewillshowthatthemonomorphismpartofthecoarseBaum-Connesconjecture(i.e.thecoarseNovikovconjec-ture)doesnotholdtruewithouttheboundedgeometrycondition.WewillconstructauniformlycontractiblemetriconR8forwhichµisnotamonomor-phism.Thus,acoarseformoftheintegralNovikovconjecturefailsevenfor nite-dimensionaluniformlycontractiblemanifolds.Infactwewillprovemore:ouruniformlycontractibleR8isnotintegrallyhypereuclidean,whichistosaythatitdoesnotadmitadegreeonecoarseLipschitzmaptoeuclideanspace.Alsointhispaper,wewillproduceauniformlycontractibleRiemannianman-ifold,abstractlyhomeomorphictoRn,n≥11,whichisboundedlyhomotopyequivalenttoanothersuchmanifold,butnotboundedlyhomeomorphictoit.Thisdisprovesonecoarseanalogoftherigidityconjectureforclosedasphericalmanifolds.Wewillalsoshowthatforeachk∈Zsomeofthesemanifoldsarenotmodkhypereuclidean.
OurconstructionisultimatelybasedonexamplesofDranishnikov[5],[6]ofspacesforwhichcohomologicaldimensiondisagreeswithcoveringdimension,andtheconsequentphenomenon,usingatheoremofEdwards(see[25]),ofcell-likemapswhichraisedimension.
De nition1.1.WewillusethenotationBr(x)todenotetheballofradiusrcenteredatx.Ametricspace(X,d)isuniformlycontractibleifforeveryrthereisanR≥rsothatforeveryx∈X,Br(x)contractstoapointinBR(x).ThemainexamplesofthisaretheuniversalcoverofacompactasphericalpolyhedronandtheopenconeinRnofa nitesubpolyhedronoftheboundaryoftheunitcube.Thereisasimilarnotionofuniformlyn-connectedwhichsaysthatanymapofann-dimensionalCWcomplexintoBr(x)isnullhomotopicinBR(x).
De nition1.2.WewillsaythataRiemannianmanifoldMnisintegrally(modk,orrationally)hypereuclideanifthereisacoarselypropercoarseLips-chitzmapf:M→Rnwhichisofdegree1(ofdegree≡1modk,orofnonzerointegraldegree,respectively).SeeSection4forde nitionsandelaborations.
Hereareourmainresults:
TheoremA.Foranygivenkandn≥8,thereisaRiemannianmani-foldZwhichisdi eomorphictoRnsuchthatZisuniformlycontractibleandrationallyhypereuclideanbutisnotmodk(orintegrally)hypereuclidean.
De nition1.3.(i)Amapf:X→YisacoarseisometryifthereisaKsothat|dY(f(x),f(x )) dX(x,x )|<Kforallx,x ∈Xandsothatforeachy∈Ythereisanx∈XwithdY(y,f(x))<K.
(ii)WewillsaythatuniformlycontractibleRiemannianmanifoldsZandZ areboundedlyhomeomorphicifthereisahomeomorphismf:Z→Z whichisacoarseisometry.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育高等数学(2)全文阅读和word下载服务。
相关推荐: