LARGERIEMANNIANMANIFOLDSWHICHAREFLEXIBLE927
willdo—producesauniformlycontractiblemetriconRkwhichisquasi-equivalenttocX.SinceXislocallyconnected,atheoremofBing[1]saysthatXhasapathmetric.IfwestartwithapathmetriconX,themetriconcXisalsoapathmetricandtheresultsof[11]allowustoconstructaRiemannianmetriconcSk 1whichisuniformlycontractibleandcoarseLipschitzequivalenttocX.
WehaveconstructedaRiemannianmanifoldZnhomeomorphictoRnsothatZiscoarselyisometrictoaweightedopenconeona“Dranishnikovspace”X.ByTheorem3.2,wecanchoosec:Sn 1→XsothatcdoesnotinduceamonomorphisminK(;Zk)-homologyandsuchthatthemapc×id:Rn→cXisacoarseisometry,whereweareusingpolarcoordinatestothinkofRnastheconeonSn 1.Inthisnotation,“c×id”referstoamapwhichpreserveslevelsintheconestructureandwhichisequaltoconeachlevel.
WeneedtoseethatZisnothypereuclidean.Thenextlemmashouldbecomfortingtoreaderswho ndthemselveswonderingaboutthe“degree”ofamapwhichisnotrequiredtobecontinuous.
Lemma4.4.IfZisanymetricspaceandf:Z→Rn(withtheeuclidean¯:Z→Rnwhichmetric)iscoarseLipschitz,thenthereisacontinuousmapf
isboundedlyclosetof.IffiscontinuousonaclosedY Z,thenwecan¯|Y=f|Y.choosef
Proof.ChooseanopencoverUofXbysetsofdiameter<1.ForeachU∈U,choosexU∈U.Let{φU}beapartitionofunitysubordinatetoUandlet ¯(x)=φU(x)f(xu).f
U∈U
BythecoarseLipschitzcondition,thereisaKsuchthat
d(x,x )<1 d(f(x),f(x ))<K.
¯(x)∈BK(f(x)),sod(f,f¯)Sinced(xU,x)<1forallUwithφU(x)=0,f
<K.
ContinuingwiththeproofofTheoremA,letf :Z→RnbeacoarselypropercoarseLipschitzmap.SinceZiscoarselyisomorphictocX,thereisacoarseLipschitzmapf:cX→Rn.Bytheabove,wemayassumethatfiscontinuous.
Sincefiscoarselyproper,f 1(B)isacompactsubsetofcX,whereBistheunitballinRn.ChooseTsolargethat
(X×[T,∞))∩f 1(B)= .
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育高等数学(9)全文阅读和word下载服务。
相关推荐: