924A.N.DRANISHNIKOV,STEVENC.FERRY,ANDSHMUELWEINBERGER
Remark3.4.In[5],[6]theanalogousresultwasprovenforcohomologytheory.Theproofissimilarforhomologytheory.See[9].
Theorem3.3alsohasarelativeversion:
(K(Z,n))=0.Thenforany niteTheorem3.3 .Supposethath (K,L)thereexistacompactumpolyhedralpair(K,L)andanyelementα∈h
Yandamapf:(Y,L)→(K,L)sothat
(i)c-dimZ(Y L)≤n.
(ii)α∈Im(f ).
(iii)f|L=idL.
Theproofisessentiallythesame.Hereisthekeylemmaintheproofof willrefertoreducedcomplexK-homologyTheorem3.2.Inwhatfollows,K willrefertoreducedrealK-homology.andKO
Lemma3.5.LetMnbea2-connectedn-manifold,n≥7,andletαbe (M;Zm),m∈Z.ThenthereexistcompactaZ MandanelementinKO
Y MalongwithaCEmapg:(Z,M)→(Y,M)sothat
(1)g|M=idM.
(2)dim(Z M)=3.
(3)j (α)=0,wherej:M→Yistheinclusion.
(K(Zk,n);Zm)=0forn≥3.WecannowapplyThe-Proof.By[26],KO +1(Cone(M),M)¯∈KOorem3.3 tothepair(Cone(M),M)andtheelementα
with α¯=αinthelongexactsequenceof(Cone(M),M),obtainingaspace +1(Y,M)withY Mwithcdim(Y M)=3sothatthereisaclassα¯ ∈KO
α¯ =αandaCEmapg:(Z,M)→(Y,M)withdim(Z M)=3.Theexactsequence:
+1(Y,M)→KO (M)→KO (Y)KO j
showsthatj (α)=0.
Next,weconstructaparticularlyniceretractionZ→M.
Lemma3.6.Let(Z,M)beacompactpairwithdim(Z M)=3andMa2-connectedn-manifold,n≥7.Thenthereisaretractionr:Z→Mwithr|(Z M)one-to-one.
Proof.Theexistenceoftheretractionfollowsfromobstructiontheoryappliedtothenerveofa necoverofZ.TherestisstandarddimensiontheoryusingtheBairecategorytheorem.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育高等数学(6)全文阅读和word下载服务。
相关推荐: